
1

Chapter 2
Applications and

Layered ArchitecturesLayered Architectures
Protocols, Services & Layering

OSI Reference Model
TCP/IP Architecture

How the Layers Work Together

1

y g
Berkeley Sockets

Application Layer Protocols & Utilities

Layers, Services & Protocols
The overall communications process between
two or more machines connected across one or
more networks is very complex
Layering partitions related communications
functions into groups that are manageable
Each layer provides a service to the layer above
Each layer operates according to a protocol

2

Each layer operates according to a protocol
Let’s use examples to show what we mean

2

Q. www.nytimes.com?

A. 64.15.247.200
1. DNS

User clicks on http://www.nytimes.com/
URL contains Internet name of machine
(www.nytimes.com), but not Internet address
Internet needs Internet address to send information to a

3

Internet needs Internet address to send information to a
machine
Browser software uses Domain Name System (DNS)
protocol to send query for Internet address
DNS system responds with Internet address

2. TCP
ACK, TCP Connection Request
From: 64.15.247.200 Port 80
To:128.100.11.13 Port 1127

ACK

Browser software uses HyperText Transfer Protocol (HTTP) to
send request for document
HTTP server waits for requests by listening to a well-known
port number (80 for HTTP)

TCP Connection Request
From: 128.100.11.13 Port 1127
To: 64.15.247.200 Port 80

4

p ()
HTTP client sends request messages through an “ephemeral
port number,” e.g. 1127
HTTP needs a Transmission Control Protocol (TCP)
connection between the HTTP client and the HTTP server to
transfer messages reliably

3

200 OK

3. HTTP
Content

HTTP client sends its request message: “GET …”
HTTP server sends a status response: “200 OK”
HTTP server sends requested file
Browser displays document

GET / HTTP/1.1

5

Browser displays document
Clicking a link sets off a chain of events across the
Internet!
Let’s see how protocols & layers come into play…

Protocols

A protocol is a set of rules that governs
how two or more communicating entities in a layerhow two or more communicating entities in a layer
are to interact
Messages that can be sent and received
Actions that are to be taken when a certain event
occurs, e.g. sending or receiving messages,
expiry of timers

6

The purpose of a protocol is to provide a
service to the layer above

4

Layers
A set of related communication functions that can be
managed and grouped together
Application Layer: communications functions that
are used by application programs

HTTP, DNS, SMTP (email)

Transport Layer: end-to-end communications
between two processes in two machines

TCP U D P l (UDP)

7

TCP, User Datagram Protocol (UDP)

Network Layer: node-to-node communications
between two machines

Internet Protocol (IP)

Example: HTTP
HTTP is an application layer protocol

R t i d t b h lf f bRetrieves documents on behalf of a browser
application program

HTTP specifies fields in request messages and
response messages

Request types; Response codes

8

Content type, options, cookies, …

HTTP specifies actions to be taken upon receipt
of certain messages

5

Example: TCP
TCP is a transport layer protocol
Provides reliable byte stream service between two y
processes in two computers across the Internet
Sequence numbers keep track of the bytes that have been
transmitted and received
Error detection and retransmission used to recover from
transmission errors and losses
TCP i i i d h d d i

9

TCP is connection-oriented: the sender and receiver must
first establish an association and set initial sequence
numbers before data is transferred
Connection ID is specified uniquely by

(send port #, send IP address, receive port #, receiver IP address)

HTTPHTTP

HTTP uses service of TCP

server
HTTP
client

Port 80Port 1127

Response
GET

10

TCPTCPTCP80, 1127 GET 1127, 80 bytesResponseGETResponse

6

Example: DNS Protocol

DNS protocol is an application layer protocol
DNS is a distributed database that resides inDNS is a distributed database that resides in
multiple machines in the Internet
DNS protocol allows queries of different types

Name-to-address or Address-to-name
Mail exchange

11

DNS usually involves short messages and so
uses service provided by UDP
Well-known port 53

1
2 345

6

Local
Name
Server

Authoritative
Name
Server

Local Name Server: resolve frequently-used names
University department, ISP
Contacts Root Name server if it cannot resolve query

Root Name Servers: 13 globally

Root
Name
Server

12

Root Name Servers: 13 globally
Resolves query or refers query to Authoritative Name Server

Authoritative Name Server: last resort
Every machine must register its address with at least two
authoritative name servers

7

Example: UDP
UDP is a transport layer protocol
Provides best-effort datagram service between two g
processes in two computers across the Internet
Port numbers distinguish various processes in the
same machine
UDP is connectionless
Datagram is sent immediately

13

Quick, simple, but not reliable

How you compare UDP with TCP regarding to advantages and cost?

What kind of applications prefer TCP, or UDP? How about streaming?

Summary
Layers: related communications functions

Application Layer: HTTP, DNS
Transport Layer: TCP UDPTransport Layer: TCP, UDP
Network Layer: IP

Services: a protocol provides a communications
service to the layer above

TCP provides connection-oriented reliable byte
transfer service
UDP provides best-effort datagram service

14

p g
Each layer builds on services of lower layers

HTTP builds on top of TCP
DNS builds on top of UDP
TCP and UDP build on top of IP

8

Why Layering Architectures?
Layering simplifies design, implementation, and
testing by partitioning overall communications
process into partsprocess into parts
Protocol in each layer can be designed separately
from those in other layers
Protocol makes “calls” for services from layer below
Layering provides flexibility for modifying and
evolving protocols and services without having to

15

g p g
change layers below
Monolithic non-layered architectures are costly,
inflexible, and soon obsolete

7-Layer OSI Reference Model

Application Application

Application Application
End-to-End Protocols

Layer

Presentation
Layer

Session
Layer

Transport
Layer

Network

Layer

Presentation
Layer

Session
Layer

Transport
Layer

NetworkNetwork Network

16

Layer

Data Link
Layer

Physical
Layer

Layer

Data Link
Layer

Physical
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Communicating End SystemsOne or More Network Nodes

9

Physical Layer

Transfers bits across link
D fi iti & ifi ti f th h i lDefinition & specification of the physical
aspects of a communications link

Mechanical: cable, plugs, pins...
Electrical/optical: modulation, signal strength,
voltage levels, bit times, …
functional/procedural: how to activate, maintain, and

17

deactivate physical links…
Ethernet, DSL, cable modem, telephone modems…
Twisted-pair cable, coaxial cable optical fiber, radio,
…

Data Link Layer
Transfers frames across direct connections

Groups bits into framesGroups bits into frames
Detection of bit errors; Retransmission of frames

Activation, maintenance, & deactivation of data link
connections
Medium access control for local area networks
Node to node flow control

18

Node-to-node flow control

Data Link
Layer

Physical
Layer

Data Link
Layer

Physical
Layer

frames

bits

10

Network Layer

Transfers packets across multiple links
and/or multiple networksand/or multiple networks

Addressing must scale to large networks
Nodes jointly execute routing algorithm to
determine paths across the network
Forwarding transfers packet across a node
Congestion control to deal with traffic surges

19

Congestion control to deal with traffic surges
Connection setup, maintenance, and teardown
when connection-based

Internetworking
Internetworking is part of network layer and provides
transfer of packets across multiple possibly dissimilar
net orks

Ethernet LAN

ATMnetworks
Gateways (routers) direct packets across networks

Net 1
Net 3

H
Net 3

G

H

Net 1

ATM
Switch

ATM
Switch

ATM
Switch

ATM
Switch

Network

20

G = gateway
H = host

Net 1

Net 5
Net 2H H

G
G

GG

G

Net 1

Net 2 Net 4
Net 5

11

Transport Layer

Transfers data end-to-end from process in a
machine to process in another machinemachine to process in another machine

Reliable stream transfer or quick-and-simple single-block transfer
Port numbers for addressing (and multiplexing)
Message segmentation and reassembly
Connection setup, maintenance, and release
End-to-end congestion control vs. node-to-node flow control

What data link layer and transport layer have in common and differ?

21

Transport
Layer

Network
Layer

Transport
Layer

Network
Layer

Network
Layer

Network
Layer

Communication Network

What data link layer and transport layer have in common and differ?

Application & Upper Layers
Application Layer: Provides
services that are frequently
required by applications: DNS,
web access, file transfer, email…
Presentation Layer: machine-
independent representation of
data…
Session La er dialog

Application
Layer

Presentation
Layer

Session
Layer

Application

Application
Layer

Transport
Layer

Application

22

Session Layer: dialog
management, recovery from
errors, …

Layer

Transport
Layer

Incorporated into
Application Layer

12

Headers & Trailers
Each protocol uses a header that carries addresses,
sequence numbers, flag bits, length indicators, etc…

Application
Layer

Transport
Layer

Network

Application
Layer

Transport
Layer

Network

Application ApplicationAPP DATA

AH APP DATA

TH AH APP DATA

NH TH AH APP DATA

23

Layer

Data Link
Layer

Physical
Layer

Layer

Data Link
Layer

Physical
Layer

NH TH AH APP DATA

DH NH TH AH APP DATA CRC

bits
What is the bandwidth utilization?

OSI Unified View: Protocols
Layer n in one machine interacts with layer n in
another machine to provide a service to layer n +1
The entities comprising the corresponding layers on
different machines are called peer processes.
The machines use a set of rules and conventions
called the layer-n protocol.
Layer-n peer processes communicate by
exchanging Protocol Data Units (PDUs)

24

g g ()

Layer n peer protocol

n
Entity

n
Entity

n-PDUs

13

OSI Unified View: Services
Communication between peer processes is
virtual and actually indirect
L 1 t f i f ti b i ki thLayer n+1 transfers information by invoking the
services provided by layer n
Services are available at Service Access Points
(SAP’s)
Each layer passes data & control information to
the layer below it until the physical layer is
reached and transfer occurs

25

reached and transfer occurs
The data passed to the layer below is called a
Service Data Unit (SDU)
SDU’s are encapsulated in PDU’s

n+1 n+1

Layers, Services & Protocols

n+1
entity

n-SAP

n 1
entity

n-SAP
n-SDU

n-SDU

n-SDU

H

26

n entity n entity
n SDU H

H n-SDU

n-PDU

14

Connectionless & Connection-
Oriented Services

Connection-Oriented Connectionless
Three-phases:

1. Connection setup
between two SAPs
to initialize state
information

2. SDU transfer

Immediate SDU
transfer
No connection setup
E.g. UDP, IP

27

2. SDU transfer
3. Connection release
E.g. TCP, ATM

Segmentation & Reassembly
A layer may impose a limit on
the size of a data block that it
can transfer for implementation SDU

Segmentation(a)

can transfer for implementation
or other reasons

Thus a layer-n SDU may be
too large to be handled as a
single unit by layer-(n-1)

Sender side: SDU is
segmented into multiple PDUs

n-SDU

n-PDU n-PDU n-PDU

Reassembly(b)

28

n-PDU

Receiver side: SDU is
reassembled from sequence of
PDUs

n-SDU

n-PDU n-PDU

What is segmentation & reassembly overhead?

15

Summary
Layers: related communications functions

Application Layer: HTTP, DNS
Transport Layer: TCP UDPTransport Layer: TCP, UDP
Network Layer: IP

Services: a protocol provides a communications
service to the layer above

TCP provides connection-oriented reliable byte
transfer service
UDP provides best-effort datagram service

29

p g
Each layer builds on services of lower layers

HTTP builds on top of TCP
DNS builds on top of UDP
TCP and UDP build on top of IP

Chapter 2
Applications and

Layered ArchitecturesLayered Architectures

TCP/IP Architecture
How the Layers Work Together

30

16

Why Internetworking?
To build a “network of networks” or Internet

operating over multiple, coexisting, different network technologies
providing ubiquitous connectivity through IP packet transfer
achieving huge economies of scale
To provide universal communication services

G

H

Net 5Net 3
H

Net 5Net 1

Reliable Stream Service

31

G
G

GG

G

H

Net 5Net 5
H

Net 5Net 2 Net 5Net 4

User Datagram Service
What is the glue that holds the Internet together?

Internet Protocol Approach
IP packets transfer information across Internet
Host A IP → router→ router…→ router→ Host B IP
IP layer in each router determines next hop (router)IP layer in each router determines next hop (router)
Network interfaces transfer IP packets across networks

Router

Internet
Layer

Network

Transport
Layer

Internet

Transport
Layer

Internet

Host A Host B

N t 1

Router

Internet
Layer

32

et o
Interface

Internet
Layer

Network
Interface

Internet
Layer

Network
Interface

Net 5Net 1

Net 5Net 2 Net 5Net 3

Router

Internet
Layer

Network
Interface

Network
Interface

Net 5Net 4

17

TCP/IP Protocol Suite

R li bl
User

Distributed
applications

HTTP SMTP RTPDNS

(ICMP, ARP)

Reliable
stream
service

datagram
service

applications
TCP UDP

IPBest-effort
connectionless

33Diverse network technologies

Network

interface 1

Network

interface 3

Network

interface 2

packet transfer

Internet Names & Addresses
Internet Names

Each host a a unique name
Independent of physical

Internet Addresses
Each host has globally unique
logical 32 bit IP addressIndependent of physical

location
Facilitate memorization by
humans
Domain Name
Organization under single
administrative unit

Host Name
Name given to host

logical 32 bit IP address
Separate address for each
physical connection to a network
Routing decision is done based
on destination IP address
IP address has two parts:

netid and hostid
netid unique

34

g
computer

User Name
Name assigned to user

leongarcia@comm.utoronto.ca

et d u que
netid facilitates routing

Dotted Decimal Notation:
int1.int2.int3.int4
128.100.10.13

How to resolve IP name to IP address Mapping?

18

Physical Addresses
LANs (and other networks) assign physical
addresses to the physical attachment to the network
The network uses its own address to transfer
packets or frames to the appropriate destination
IP address needs to be resolved to physical address
at each IP network interface
Example: Ethernet uses 48-bit addresses

Each Ethernet network interface card (NIC) has globally

35

() g y
unique Medium Access Control (MAC) or physical address
First 24 bits identify NIC manufacturer; second 24 bits are
serial number
00:90:27:96:68:07 12 hex numbers

Intel

Example Internet

(1,1) s

(2,1)

(1,3) r (2 2)
PPP

Netid 2

PCServer
Router

(1,2)

w

() (2,2)Netid=2
Ethernet
(netid=1) Workstation

netid hostid Physical
address

*PPP does not use addresses

36

server 1 1 s
workstation 1 2 w

router 1 3 r

router 2 1 -

PC 2 2 -

19

Encapsulation

IP
header IP Payload

Ethernet
header FCSIP

header IP Payload

37

Ethernet header contains:
source and destination physical addresses
network protocol type (e.g. IP)

IP packet from workstation to
server

(1 1)

(2,1)
PPP

PCServer
Router

1. IP packet has (1,2) IP address for source and (1,1) IP address for
d ti ti

(1,1) s

(1,2)

w

(1,3) r (2,2)
PPP

Ethernet

Workstation

(1,2), (1,1) w, s

38

destination
2. IP table at workstation indicates (1,1) connected to same network, so

IP packet is encapsulated in Ethernet frame with addresses w and s
3. Ethernet frame is broadcast by workstation NIC and captured by

server NIC
4. NIC examines protocol type field and then delivers packet to its IP

layer

20

IP packet from server to PC

(1,1) s

(2,1)

(1 3) r (2 2)

PCServer
Router

(1,1), (2,2)

s

(1,2)

w

(1,3) r (2,2)

Workstation

1. IP packet has (1,1) and (2,2) as IP source and destination addresses
2. IP table at server indicates packet should be sent to router, so IP packet is

l t d i Eth t f ith dd d

(1,1), (2,2) s, r

39

encapsulated in Ethernet frame with addresses s and r
3. Ethernet frame is broadcast by server NIC and captured by router NIC
4. NIC examines protocol type field and then delivers packet to its IP layer
5. IP layer examines IP packet destination address and determines IP packet

should be routed to (2,2)
6. Router’s table indicates (2,2) is directly connected via PPP link
7. IP packet is encapsulated in PPP frame and delivered to PC
8. PPP at PC examines protocol type field and delivers packet to PC IP layer

How the layers work together

(1 1) s

(2,1)

(1 3) PPP

(a) PCServer
Router

HTTP HTTP

(1,1) s (1,3) r (2,2)
PPP

Ethernet

(b) Server PC
TCP uses node-to-node

unreliable packet transfer of IP

HTTP uses process-to-process
reliable byte stream transfer of

TCP connection:
Server socket: (IP Address, 80)
PC socket (IP Address, Eph. #)

40

Network interface

IP

TCP

Network interface

IP

Network interface

IP

TCP

Ethernet PPP
Router

unreliable packet transfer of IP
Server IP address & PC IP address

Internet

21

Routing Table Example (Ex 2.39)

(1 0)

(2, 4)

(1,0)

(2,0)

(3,0)

Routing Table Example

22

Encapsulation
TCP Header contains
source & destination

port numbers
HTTP Request

port numbers

IP Header contains
source and destination

IP addresses;
transport protocol type

Ethernet Header contains

TCP
header HTTP Request

43

source & destination MAC
addresses;
network protocol type

IP
header

TCP
header HTTP Request

Ethernet
header

IP
header

TCP
header HTTP Request FCS

How the layers work together:
Network Analyzer Example

Internet

User clicks on http://www.nytimes.com/
Ethereal network analyzer captures all frames

Internet

44

observed by its Ethernet NIC
Sequence of frames and contents of frame can be
examined in detail down to individual bytes

23

Ethereal windowsTop Pane
shows

frame/packet
sequence

Middle Pane
shows

encapsulation for
a given frame

45

Bottom Pane shows hex & text

Top pane: frame sequence
DNS

Query

TCP
Connection

Setup HTTP
Request &
Response

46

24

Middle pane: Encapsulation

Ethernet Frame

Ethernet
Destination and

S
Protocol Type

47

Source
Addresses

Middle pane: Encapsulation

IP Packet

And a lot of
other stuff!

IP Packet

IP Source and
Destination

48

Destination
Addresses

Protocol Type

25

Summary

Encapsulation is key to layering
IP provides for transfer of packets acrossIP provides for transfer of packets across
diverse networks
TCP and UDP provide universal
communications services across the Internet
Distributed applications that use TCP and

49

UDP can operate over the entire Internet
Internet names, IP addresses, port numbers,
sockets, connections, physical addresses

Chapter 2
Applications and

Layered ArchitecturesLayered Architectures

Sockets

50

26

Socket API
Berkeley UNIX Sockets API

API (Application Programming Interface): provides a (pp g g) p
standard set of functions that can be called by
applications
Abstraction for applications to send & receive data
Applications create sockets that “plug into” network
Applications write/read to/from sockets
Implemented in the kernel

51

Implemented in the kernel
Facilitates development of network applications
Hides details of underlying protocols & mechanisms

Also in Windows, Linux, and other OS’s

Communications through Sockets
Client Server

Application 1Socket
interface

Application 2 Socket
interface

descriptor

port number

descriptor

port number

• Application references a
socket through a descriptor
• Socket bound to a port number

Socket

User

Kernel

User

Kernel

Socket

52

Underlying
communication

protocols

Underlying
communication

protocols

Communications
network

27

Stream mode of service
Connection-oriented

First, setup connection
Connectionless
Immediate transfer of one
block of informationbetween two peer

application processes
Then, reliable bidirectional
in-sequence transfer of byte
stream (boundaries not
preserved in transfer)
Multiple write/read between

block of information
(boundaries preserved)
No setup overhead & delay
Destination address with
each block
Send/receive to/from
multiple peer processes

53

Multiple write/read between
peer processes
Finally, connection release
Uses TCP

Best-effort service only
Possible out-of-order
Possible loss

Uses UDP

Client & Server Differences
Server

Specifies well-known port # when creating socketp p g
May have multiple IP addresses (net interfaces)
Waits passively for client requests

Client
Assigned ephemeral port #
Initiates communications with server

54

Needs to know server’s IP address & port #
DNS for URL & server well-known port #

Server learns client’s address & port #

28

Socket Calls for Connection-
Oriented Mode

Server
Server does Passive Open

socket creates socket to listen for connection
requestssocket()

socket()

bind()

Client
listen()

accept()

Blocks Connect

requests
Server specifies type: TCP (stream)
socket call returns: non-negative integer descriptor;
or -1 if unsuccessful

55

read()

close()

Data

Datawrite()

connect()negotiation

write()

read()

close()

Socket Calls for Connection-
Oriented Mode

Server
Server does Passive Open

bind assigns local address & port # to socket with
specified descriptorsocket()

socket()

bind()

Client
listen()

accept()

Blocks Connect

specified descriptor
Can wildcard IP address for multiple net interfaces
bind call returns: 0 (success); or -1 (failure)
Failure if port # already in use or if reuse option not
set

56

read()

close()

Data

Datawrite()

connect()negotiation

write()

read()

close()

29

Socket Calls for Connection-
Oriented Mode

Server
Server does Passive Open

listen indicates to TCP readiness to receive
connection requests for socket with given descriptorsocket()

socket()

bind()

Client
listen()

accept()

Blocks Connect

connection requests for socket with given descriptor
Parameter specifies max number of requests that may
be queued while waiting for server to accept them
listen call returns: 0 (success); or -1 (failure)

57

read()

close()

Data

Datawrite()

connect()negotiation

write()

read()

close()

Socket Calls for Connection-
Oriented Mode

Server
Server does Passive Open

Server calls accept to accept incoming requests
accept blocks if queue is emptysocket()

socket()

bind()

Client
listen()

accept()

Blocks Connect

accept blocks if queue is empty

58

read()

close()

Data

Datawrite()

connect()negotiation

write()

read()

close()

30

Socket Calls for Connection-
Oriented Mode

Server
Client does Active Open

socket creates socket to connect to server
Client specifies type: TCP (stream)socket()

socket()

bind()

Client
listen()

accept()

Blocks Connect

Client specifies type: TCP (stream)
socket call returns: non-negative integer descriptor;
or -1 if unsuccessful

59

read()

close()

Data

Datawrite()

connect()negotiation

write()

read()

close()

Socket Calls for Connection-
Oriented Mode

Server
Client does Active Open

connect establishes a connection on the local socket
with the specified descriptor to the specified remotesocket()

socket()

bind()

Client
listen()

accept()

Blocks Connect

with the specified descriptor to the specified remote
address and port #
connect returns 0 if successful; -1 if unsuccessful

Note: connect
initiates TCP three way

60

read()

close()

Data

Datawrite()

connect()negotiation

write()

read()

close()

initiates TCP three-way
handshake

31

Socket Calls for Connection-
Oriented Mode

Server
accept wakes with incoming connection request
accept fills client address & port # into address structure
accept call returns: descriptor of new connection socketsocket()

socket()

bind()

Client
listen()

accept()

Blocks Connect

accept call returns: descriptor of new connection socket
(success); or -1 (failure)
Client & server use new socket for data transfer
Original socket continues to listen for new requests

61

read()

close()

Data

Datawrite()

connect()negotiation

write()

read()

close()

Socket Calls for Connection-
Oriented Mode

Server
Data Transfer

Client or server call write to transmit data into a
connected socket

socket()

socket()

bind()

Client
listen()

accept()

Blocks Connect

connected socket
write specifies: socket descriptor; pointer to a buffer;
amount of data; flags to control transmission behavior
write call returns: # bytes transferred (success); or -1
(failure); blocks until all data transferred

62

read()

close()

Data

Datawrite()

connect()negotiation

write()

read()

close()

32

Socket Calls for Connection-
Oriented Mode

Server
Data Transfer

Client or server call read to receive data from a
connected socket

socket()

socket()

bind()

Client
listen()

accept()

Blocks Connect

connected socket
read specifies: socket descriptor; pointer to a buffer;
amount of data
read call returns: # bytes read (success); or -1 (failure);
blocks if no data arrives

Note: write and read
can be called multiple

63

read()

close()

Data

Datawrite()

connect()negotiation

write()

read()

close()

can be called multiple
times to transfer byte
streams in both
directions

Socket Calls for Connection-
Oriented Mode

Server
Connection Termination

Client or server call close when socket is no longer
needed

socket()

socket()

bind()

Client
listen()

accept()

Blocks Connect

needed
close specifies the socket descriptor
close call returns: 0 (success); or -1 (failure)

Note: close initiates
TCP graceful close

64

read()

close()

Data

Datawrite()

connect()negotiation

write()

read()

TCP graceful close
sequence

close()

33

Example: TCP Echo Server
/* A simple echo server using TCP */
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define SERVER TCP PORT 3000

/* Bind an address to the socket */
bzero((char *)&server, sizeof(struct sockaddr_in));
server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = htonl(INADDR_ANY);
if (bind(sd, (struct sockaddr *)&server,
sizeof(server)) == -1) {#define SERVER_TCP_PORT 3000

#define BUFLEN 256

int main(int argc, char **argv)
{

int n, bytes_to_read;
int sd, new_sd, client_len, port;
struct sockaddr_in server, client;
char *bp, buf[BUFLEN];

switch(argc) {
case 1:

port = SERVER_TCP_PORT;
break;

case 2:
port = atoi(argv[1]);
break;

default:
fprintf(stderr, "Usage: %s [port]\n", argv[0]);
exit(1);

fprintf(stderr, "Can't bind name to socket\n");
exit(1);

}

/* queue up to 5 connect requests */
listen(sd, 5);

while (1) {
client_len = sizeof(client);
if ((new_sd = accept(sd, (struct sockaddr *)&client,
&client_len)) == -1) {

fprintf(stderr, "Can't accept client\n");
exit(1);

}

bp = buf;
bytes_to_read = BUFLEN;
while ((n = read(new_sd, bp, bytes_to_read)) > 0) {

bp += n;

65

exit(1);
}

/* Create a stream socket */
if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

fprintf(stderr, "Can't create a socket\n");
exit(1);

}

bp + n;
bytes_to_read -= n;

}
printf("Rec'd: %s\n", buf);

write(new_sd, buf, BUFLEN);
printf("Sent: %s\n", buf);
close(new_sd);

}
close(sd);
return(0);

}

Example: TCP Echo Client
/* A simple TCP client */
#include <stdio.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

bzero((char *)&server, sizeof(struct sockaddr_in));
server.sin_family = AF_INET;
server.sin_port = htons(port);
if ((hp = gethostbyname(host)) == NULL) {

fprintf(stderr, "Can't get server's address\n");
exit(1);

}
#define SERVER_TCP_PORT 3000
#define BUFLEN 256

int main(int argc, char **argv)
{

int n, bytes_to_read;
int sd, port;
struct hostent *hp;
struct sockaddr_in server;
char *host, *bp, rbuf[BUFLEN], sbuf[BUFLEN];

switch(argc) {
case 2:

host = argv[1];
port = SERVER_TCP_PORT;
break;

case 3:
host = argv[1];

t t i([2])

}
bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length);

/* Connecting to the server */
if (connect(sd, (struct sockaddr *)&server,
sizeof(server)) == -1) {

fprintf(stderr, "Can't connect\n");
exit(1);

}
printf("Connected: server's address is %s\n", hp->h_name);

printf("Transmit:\n");
gets(sbuf);
write(sd, sbuf, BUFLEN);

printf("Receive:\n");
bp = rbuf;
bytes_to_read = BUFLEN;
while ((n = read(sd, bp, bytes_to_read)) > 0) {

b

66

port = atoi(argv[2]);
break;

default:
fprintf(stderr, "Usage: %s host [port]\n", argv[0]);
exit(1);

}

/* Create a stream socket */
if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

fprintf(stderr, "Can't create a socket\n");
exit(1);

}

bp += n;
bytes_to_read -= n;

}
printf("%s\n", rbuf);

close(sd);
return(0);

}

34

Socket Calls for Connection-Less
Mode

Server
Server started

socket creates socket of type UDP (datagram)
socket call returns: descriptor; or 1 if unsuccessful

socket()

socket()
Client

bind()

Blocks until server

recvfrom()

Data

socket call returns: descriptor; or -1 if unsuccessful
bind assigns local address & port # to socket with
specified descriptor; Can wildcard IP address

67

sendto()
recvfrom()

Data

Blocks until server
receives data from
client

close()
close()

sendto()

Socket Calls for Connection-Less
Mode

Server
recvfrom copies bytes received in specified socket
into a specified location
recvfrom blocks until data arrives

socket()

socket()
Client

bind()

Blocks until server

recvfrom()

Data

recvfrom blocks until data arrives

68

sendto()
recvfrom()

Data

Blocks until server
receives data from
client

close()
close()

sendto()

35

Socket Calls for Connection-Less
Mode

Server
Client started

socket creates socket of type UDP (datagram)
socket call returns: descriptor; or 1 if unsuccessful

socket()

socket()
Client

bind()

Blocks until server

recvfrom()

Data

socket call returns: descriptor; or -1 if unsuccessful

69

sendto()

sendto()
recvfrom()

Data

Blocks until server
receives data from
client

close()
close()

Socket Calls for Connection-Less
Mode

Server
Client started

sendto transfer bytes in buffer to specified socket
sendto specifies: socket descriptor; pointer to a

socket()

socket()
Client

bind()

Blocks until server

recvfrom()

Data

sendto specifies: socket descriptor; pointer to a
buffer; amount of data; flags to control transmission
behavior; destination address & port #; length of
destination address structure
sendto returns: # bytes sent; or -1 if unsuccessful

70

sendto()

sendto()
recvfrom()

Data

Blocks until server
receives data from
client

close()
close()

36

Socket Calls for Connection-Less
Mode

Server
recvfrom wakes when data arrives
recvfrom specifies: socket descriptor; pointer to a
buffer to put data; max # bytes to put in buffer; control

socket()

socket()
Client

bind()

Blocks until server

recvfrom()

Data

buffer to put data; max # bytes to put in buffer; control
flags; copies: sender address & port #; length of
sender address structure
recvfrom returns # bytes received or -1 (failure)

Note: receivefrom
t d t f t

71

sendto()
recvfrom()

Data

Blocks until server
receives data from
client

close()
close()

sendto() returns data from at
most one send, i.e.
from one datagram

Socket Calls for Connection-Less
Mode

Server
Socket Close

Client or server call close when socket is no longer
needed

socket()

socket()
Client

bind()

Blocks until server

recvfrom()

Data

needed
close specifies the socket descriptor
close call returns: 0 (success); or -1 (failure)

72

sendto()
recvfrom()

Data

Blocks until server
receives data from
client

close()
close()

sendto()

37

Example: UDP Echo Server

/* Echo server using UDP */
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

/* Bind an address to the socket */
bzero((char *)&server, sizeof(server));
server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = htonl(INADDR_ANY);
i i

#define SERVER_UDP_PORT 5000
#define MAXLEN 4096

int main(int argc, char **argv)
{

int sd, client_len, port, n;
char buf[MAXLEN];
struct sockaddr_in server, client;

switch(argc) {
case 1:

port = SERVER_UDP_PORT;
break;

case 2:
port = atoi(argv[1]);
break;

default:
fprintf(stderr, "Usage: %s [port]\n", argv[0]);

if (bind(sd, (struct sockaddr *)&server,
sizeof(server)) == -1) {

fprintf(stderr, "Can't bind name to socket\n");
exit(1);

}

while (1) {
client_len = sizeof(client);
if ((n = recvfrom(sd, buf, MAXLEN, 0,
(struct sockaddr *)&client, &client_len)) < 0) {

fprintf(stderr, "Can't receive datagram\n");
exit(1);

}

if (sendto(sd, buf, n, 0,
(struct sockaddr *)&client, client_len) != n) {

fprintf(stderr, "Can't send datagram\n");
exit(1);

}

73

exit(1);
}

/* Create a datagram socket */
if ((sd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {

fprintf(stderr, "Can't create a socket\n");
exit(1);

}

}
close(sd);
return(0);

}

Example: UDP Echo Client
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#define SERVER_UDP_PORT 5000
#define MAXLEN 4096
#define DEFLEN 64

else {
fprintf(stderr,
"Usage: %s [-s data_size] host [port]\n", pname);
exit(1);

}

if ((sd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
fprintf(stderr, "Can't create a socket\n");
exit(1);

}

long delay(struct timeval t1, struct timeval t2)
{

long d;
d = (t2.tv_sec - t1.tv_sec) * 1000;
d += ((t2.tv_usec - t1.tv_usec + 500) / 1000);
return(d);

}
int main(int argc, char **argv)
{

int data_size = DEFLEN, port = SERVER_UDP_PORT;
int i, j, sd, server_len;
char *pname, *host, rbuf[MAXLEN], sbuf[MAXLEN];
struct hostent *hp;
struct sockaddr_in server;
struct timeval start, end;
unsigned long address;

pname = argv[0];
argc

bzero((char *)&server, sizeof(server));
server.sin_family = AF_INET;
server.sin_port = htons(port);
if ((hp = gethostbyname(host)) == NULL) {

fprintf(stderr, "Can't get server's IP address\n");
exit(1);

}
bcopy(hp->h_addr, (char *) &server.sin_addr, hp->h_length);

if (data_size > MAXLEN) {
fprintf(stderr, "Data is too big\n");
exit(1);

}
for (i = 0; i < data_size; i++) {

j = (i < 26) ? i : i % 26;
sbuf[i] = 'a' + j;

} // data is a, b, c, …, z, a, b, …
gettimeofday(&start, NULL); /* start delay measurement */
server len = sizeof(server);

74

argc--;
argv++;
if (argc > 0 && (strcmp(*argv, "-s") == 0)) {

if (--argc > 0 && (data_size = atoi(*++argv))) {
argc--;
argv++;

}
else {

fprintf(stderr,
"Usage: %s [-s data_size] host [port]\n", pname);
exit(1);

}
}
if (argc > 0) {

host = *argv;
if (--argc > 0)

port = atoi(*++argv);
}

server_len sizeof(server);
if (sendto(sd, sbuf, data_size, 0, (struct sockaddr *)

&server, server_len) == -1) {
fprintf(stderr, "sendto error\n");
exit(1);

}
if (recvfrom(sd, rbuf, MAXLEN, 0, (struct sockaddr *)

&server, &server_len) < 0) {
fprintf(stderr, "recvfrom error\n");
exit(1);

}
gettimeofday(&end, NULL); /* end delay measurement */
printf(“round-trip delay=%ld ms.\n”, delay(start, end));
if (strncmp(sbuf, rbuf, data_size) != 0)

printf("Data is corrupted\n");
close(sd);
return(0);

}

