Chapter 2
Applications and
Layered Architectures

Protocols, Services & Layering | g @ @ ®

OSI Reference Model | @@ ®®

TCP/IP Architecture

How the Layers Work Together
Berkeley Sockets

Application Layer Protocols & Utilities

Layers, Services & Protocols

e The overall communications process between
two or more machines connected across one or
more networks is very complex

e Layering partitions related communications
functions into groups that are manageable

e Each layer provides a service to the layer above
e Each layer operates according to a protocol
e Let's use examples to show what we mean

[
00000
0000
o000
(X]

User clicks on

URL contains Internet name of machine
(), but not Internet address

Internet needs Internet address to send information to a
machine

Browser software uses Domain Name System (DNS)
protocol to send query for Internet address

DNS system responds with Internet address

; ACK m
/(ACK, TCP Connection Request \\
From: 64.15.247.200 Port 80)
To:128.100.11.13 Port 1127
va
TCP Connection Request
From: 128.100.11.13 Port 1127
To: 64.15.247.200 Port 80

Browser software uses HyperText Transfer Protocol (HTTP) to
send request for document

HTTP server waits for requests by listening to a well-known
port number (80 for HTTP)

HTTP client sends request messages through an “ephemeral
port number,” e.g. 1127

HTTP needs a Transmission Control Protocol (TCP)
connection between the HTTP client and the HTTP server to
transfer messages reliably

i
s00000
0000
o000
(X]

e HTTP client sends its request message: “GET ...”

e HTTP server sends a status response: “200 OK”

e HTTP server sends requested file

e Browser displays document

e Clicking a link sets off a chain of events across the

Internet!

e Let’s see how protocols & layers come into play...
Protocols HE

e A protocol is a set of rules that governs

e how two or more communicating entities in a layer
are to interact

e Messages that can be sent and received

e Actions that are to be taken when a certain event
occurs, e.g. sending or receiving messages,
expiry of timers

The purpose of a protocol is to provide a
service to the layer above

Layers

e A set of related communication functions that can be
managed and grouped together

e Application Layer. communications functions that
are used by application programs
e HTTP, DNS, SMTP (email)

e Transport Layer: end-to-end communications
between two processes in two machines
e TCP, User Datagram Protocol (UDP)

e Network Layer: node-to-node communications
between two machines
e Internet Protocol (IP)

Example: HTTP

e HTTP is an application layer protocol

e Retrieves documents on behalf of a browser
application program

e HTTP specifies fields in request messages and
response messages
e Request types; Response codes
e Content type, options, cookies, ...

e HTTP specifies actions to be taken upon receipt
of certain messages

Example: TCP

TCP is a transport layer protocol

Provides reliable byte stream service between two
processes in two computers across the Internet

Sequence numbers keep track of the bytes that have been
transmitted and received

Error detection and retransmission used to recover from
transmission errors and losses

TCP is connection-oriented: the sender and receiver must
first establish an association and set initial sequence
numbers before data is transferred

Connection ID is specified uniquely by

(send port #, send IP address, receive port #, receiver IP address)

HTTP uses service of TCP

Port 1127 —y —

v v_Port 80

A

Example: DNS Protocol

e DNS protocol is an application layer protocol

e DNS is a distributed database that resides in
multiple machines in the Internet

e DNS protocol allows queries of different types
o Name-to-address or Address-to-name
e Mail exchange

e DNS usually involves short messages and so
uses service provided by UDP

e Well-known port 53

11

Local
Name
Server

E

Authoritative
D Name
Server

Name
Server

e Local Name Server: resolve frequently-used names
e University department, ISP
o Contacts Root Name server if it cannot resolve query

e Root Name Servers: 13 globally
e Resolves query or refers query to Authoritative Name Server

e Authoritative Name Server: last resort

e Every machine must register its address with at least two
authoritative name servers

12

Example: UDP

e UDP is a transport layer protocol

e Provides best-effort datagram service between two
processes in two computers across the Internet

e Port numbers distinguish various processes in the
same machine

e UDP is connectionless
e Datagram is sent immediately
e Quick, simple, but not reliable

How you compare UDP with TCP regarding to advantages and cost?

What kind of applications prefer TCP, or UDP? How about streaming?

13

Summary

e Layers: related communications functions
e Application Layer: HTTP, DNS
e Transport Layer: TCP, UDP
e Network Layer: IP
e Services: a protocol provides a communications
service to the layer above

o TCP provides connection-oriented reliable byte
transfer service

e UDP provides best-effort datagram service
e Each layer builds on services of lower layers
e HTTP builds on top of TCP
e DNS builds on top of UDP
e TCP and UDP build on top of IP

14

Why Layering Architectures?

e Layering simplifies design, implementation, and
testing by partitioning overall communications
process into parts

e Protocol in each layer can be designed separately
from those in other layers

e Protocol makes “calls” for services from layer below

e Layering provides flexibility for modifying and
evolving protocols and services without having to
change layers below

e Monolithic non-layered architectures are costly,
inflexible, and soon obsolete

15

[X X J
[X X X
[X X
332
- [J
7-Layer OSI Reference Model
Application Application
! End-to-End Protocols !
Application Application
Layer - - - - -1* Layer
Presentation | _| Presentation
Layer o - Layer
Session | _ _ _ —,| Session
Layer Layer
Transport | »| Transport
Layer Layer
4)
Network Network |,.....,| Network .| Network
Layer Layer Layer Layer
Data Link [Il | Data Link Data Link Data Link
Layer Layer Layer Layer
Physical |, Physical |«.....s] Physical [«..J{»] Physical
Layer Layer Layer Layer
! __| [J L_/] 3
"~ One or More Network Nodes 3

Physical Layer

e Transfers bits across link

Definition & specification of the physical
aspects of a communications link
e Mechanical: cable, plugs, pins...

e Electrical/optical: modulation, signal strength,
voltage levels, bit times, ...

o functional/procedural: how to activate, maintain, and
deactivate physical links...

Ethernet, DSL, cable modem, telephone modems...
Twisted-pair cable, coaxial cable optical fiber, radio,

&8

17

Data Link Layer

e Transfers frames across direct connections
e Groups bits into frames
e Detection of bit errors; Retransmission of frames

e Activation, maintenance, & deactivation of data link
connections

e Medium access control for local area networks
e Node-to-node flow control

Data Link frames Data Link
Layer < > Layer
Physical bits Physical
Layer —> Layer N

$3te
[
Network Layer 3
e Transfers packets across multiple links
and/or multiple networks
e Addressing must scale to large networks
e Nodes jointly execute routing algorithm to
determine paths across the network
e Forwarding transfers packet across a node
e Congestion control to deal with traffic surges
e Connection setup, maintenance, and teardown
when connection-based
[X X J
esss
Internetworking &
Ethernet LAN
° stwork layer and provides
nu ATM \ /
Network | AT™
° ac _ Switch \
ATM ATM F—
— Switch

Switch

G = gateway
H = host

20

10

Transport Layer

e Transfers data end-to-end from process in a

machine to process in another machine

e Reliable stream transfer or quick-and-simple single-block transfer
e Port numbers for addressing (and multiplexing)

e Message segmentation and reassembly

e Connection setup, maintenance, and release

e End-to-end congestion control vs. node-to-node flow control

What data link layer and transport layer have in common and differ?

TrANSPOIT L oottt senses »| Transport
Layer Layer
Network (Network Network | . || Network
Layer L Layer Layer Layer
21

Communication Network

Application & Upper Layers

e Application Layer: Provides
services that are frequently
required by applications: DNS,
web access, file transfer, email...

Applii:ation

Application
Layer

Transport
Layer

""" Incorporated into
Application Layer

22

11

Headers & Trailers

e Each protocol uses a header that carries addresses,
sequence numbers, flag bits, length indicators, etc...

Appliciation eermeeeemensessesesassssssestane) APP DATA oeveeeenens Application
Application | e AH! APP DATA ---eeeeereeed] Application
Layer Layer
Transport Transport
Layer | - AH APP DATA oo Layer
Network Network
Cayer |+t NH - AHIAPP DATA oo Cayer
Data Link Data Link
Layer [DH NH|TH AH/APPDATA CRC{ Layer
Physical . Physical
PV R o | S — Layer
What is the bandwidth utilization?

23

OSI Unified View: Protocols

e Layer nin one machine interacts with layer n in

another machine to provide a service to layer n +1
e The entities comprising the corresponding layers on

different machines are called peer processes.

e The machines use a set of rules and conventions

called the layer-n protocol.

e Layer-n peer processes communicate by
exchanging Protocol Data Units (PDUSs)

n-PDUs
— - [.
=Y | I

Layer n peer protocol

24

12

OSI Unified View: Services

Communication between peer processes is
virtual and actually indirect

Layer n+1 transfers information by invoking the
services provided by layer n

Services are available at Service Access Points
(SAP’S)
Each layer passes data & control information to

the layer below it until the physical layer is
reached and transfer occurs

The data passed to the layer below is called a
Service Data Unit (SDU)

SDU'’s are encapsulated in PDU'’s

25

Layers, Services & Protocols

n+1 ________________ n+1
entity |._._._._._._._._ entity
n-SDU n-SDU
n-SAP 1 v_ | v n-SAP
nentity | n-PDU n entity

T EEs (]

26

13

Connectionless & Connection-
Oriented Services

e Connection-Oriented e Connectionless

e Three-phases: e Immediate SDU
Connection setup transfer
between two SAPs e No connection setup
to initialize state e E.g. UDP, IP
information

SDU transfer
Connection release
e E.g. TCP, ATM

27

Segmentation & Reassembly

e A layer may impose a limit on

the size of a data block that it @ Segmentation
can tr:ansfer for implementation
or other reasons
e Thus a layer-n SDU may be ./,/ \
too large to be handled as a [n-PDU | [n-PDU | [n-PDU |
single unit by layer-(n-1)
segmented into multiple PDUs

e Receiver side: SDU is

reassembled from sequence of /7 \

PDUs
[n-PDU | [n-PDU | [n-PDU |
What is segmentation & reassembly overhead?

28

14

Summary

e Layers: related communications functions
e Application Layer: HTTP, DNS
e Transport Layer: TCP, UDP
e Network Layer: IP
e Services: a protocol provides a communications
service to the layer above

e TCP provides connection-oriented reliable byte
transfer service

e UDP provides best-effort datagram service

e Each layer builds on services of lower layers
e HTTP builds on top of TCP
e DNS builds on top of UDP
e TCP and UDP build on top of IP

29

Applications and
Layered Architectures

TCP/IP Architecture
How the Layers Work Together

30

15

Why Internetworking?

e To build a “network of networks” or Internet
e operating over multiple, coexisting, different network technologies
e providing ubiquitous connectivity through IP packet transfer
e achieving huge economies of scale
e To provide universal communication services

Reliable Stream Service

s e
.
- — F = Net 5
. Net 2 I Bl F Net 4 |i|
-]

User Datagram Service
What is the glue that holds the Internet together?

31

[X X J
[X X X
[X X
ess
Internet Protocol Approach :
e |P packets transfer information across Internet
Host A IP — router— router...— router— Host B IP
e |P layer in each router determines next hop (router)
e Network interfaces transfer IP packets across networks
Host A Router Host B
Router
Transport Internet Transport
Layer Layer Internet Layer
Layer
t Network Net 1 Internet
Interface ————— Network Laver
] Interface G
Network Router Network
Interface Internet Interface
\ Layer
Net 4
Net 2 Network Net 3 w
Interface [——

TCP/IP Protocol Suite
[_wrre | [sure]

/Distributed

, applications User
Reliable — UDP datagram
strea}m service
service \ /

Best-effgrt P (ICMP, ARP)
connectionless

packet transfer

Diverse network technologies

Internet Names & Addresses

Internet Names _ Internet Addresses
e Each host a a unique name e Each host has globally unique
. :gglgtriaggdent of physical logical 32 bit IP address

Separate address for each

¢ Eﬁglgr?;e memorization by physical connection to a network
» Domain Name e Routing decision is done based
« Organization under single on destination IP address
administrative unit e |P address has two parts:
e Host Name e netid and hostid
e Name given to host e netid unique
computer

e netid facilitates routing

Dotted Decimal Notation:
intl.int2.int3.int4
128.100.10.13

e User Name
e Name assigned to user

leongarcia@comm.utoronto.ca
How to resolve IP name to IP address Mapping? u

17

Physical Addresses

e LANSs (and other networks) assign physical
addresses to the physical attachment to the network

e The network uses its own address to transfer
packets or frames to the appropriate destination

e |P address needs to be resolved to physical address
at each IP network interface

e Example: Ethernet uses 48-bit addresses

e Each Ethernet network interface card (NIC) has globally
unique Medium Access Control (MAC) or physical address

o First 24 bits identify NIC manufacturer; second 24 bits are
serial number

e 00:90:27:96:68:07 12 hex numbers
H_}

Intel

35

Example Internet

Server PC
. Router . Ijl
Y/ m—| e L e LT
PPP f——\
(.1 s‘ @3 [r . 22
Netid=2 (2.2)
w
Ethernet *
PPP does not use addresses
(netid=1) Workstation
==
(1,2)
netid hostid Physical
address
server 1 1 S
workstation 1 2 w
router 1 3 r
router 2 1 -
PC 2 2 _ 36

18

Encapsulation

- IP Payload

g

Ethernet
header - IP Payload FCS

e Ethernet header contains:
e source and destination physical addresses
e network protocol type (e.g. IP)

37

M [X X J
IP packet from workstation to sses
[
server °s
Server PC
Rout i
. outer 20
“od T pep T =
Yty aalr @2
Ethernet Ij‘ w, s | (1,2), (1,1) ‘
j———Y
—= Workstation
1.2)
1. IP packet has (1,2) IP address for source and (1,1) IP address for
destination
2, IP table at workstation indicates (1,1) connected to same network, so

IP packet is encapsulated in Ethernet frame with addresses w and s
3. Ethernet frame is broadcast by workstation NIC and captured by
server NIC
4. NIC examines protocol type field and then delivers packet to its IP

layer 38

19

[X X J
[X X X
343
IP packet from server to PC 3
Server PC
Router
L] eo[[aned .
(:11)‘3 —
D/g a3 @2)
v [anea]}
S, I (1,1), (2,2) Ijl
ﬁ Workstation
(1.2
IP packet has (1,1) and (2,2) as IP source and destination addresses
2. IP table at server indicates packet should be sent to router, so IP packet is

encapsulated in Ethernet frame with addresses s and r
Ethernet frame is broadcast by server NIC and captured by router NIC
NIC examines protocol type field and then delivers packet to its IP layer

IP layer examines IP packet destination address and determines IP packet
should be routed to (2,2)

Router’s table indicates (2,2) is directly connected via PPP link
IP packet is encapsulated in PPP frame and delivered to PC 30
PPP at PC examines protocol type field and delivers packet to PC IP layer

How the layers work together

a Server
@ D F‘ Router
e\ B e teiniadalaia e L L L
1,1) 5| I PPP
Ethernet
HTTP uses process-to-process
reliable byte stream transfer of
TCP connection:
Server socket: (IP Address, 80)
Server)
() PC socket (IP Address, Eph. #) pC
HTTP TCP uses node-to-node HTTP
T unreliable packet transfer of IP e
TCP Server IP address & PC IP address TCP
Y |
IP \ 1 P
Internet ece
40
- -~

20

Routing Table Example (Ex 2.39) ‘

(1.3)
[02) |

(1.1) network 1 (1,0)

2.1

e.n | @ | (2.3)

network 2 (2,0) 2,4

(14)
P

(3.3) 3.2)

<31)

network 3 (3,0)
(a) Suppose that all traffic from network 3 that 1s destined to H1 15 to be routed directly through router R2, and
all other traffic from network 3 15 fo go to network 2. What routmng table entries should be present m the
network 3 hosts and 1n R2?

Routing Table Example

(a) Suppose that all traffic from network 3 that 1s destined to H1 s to be routed directly through router R2, and
all other traffic from network 3 1s to go to network 2. What routing table entries should be present m the
network 3 hosts and in R27

H5 He R2
Destination Next .l'?OID Destination Next hop Destination MNext hop
Default (3.1) default @31 (1.2) (14)

(1.0) 21
(20) (24)
(3.0) @mn

21

Encapsulation

TCP Header contains
source & destination HTTP Request
port numbers

TCP
header HTTP Request

TCP

TCP
header HTTP Request -

How the layers work together:
Network Analyzer Example

.

e User clicks on hitp://www.nytimes.com/

e Ethereal network analyzer captures all frames
observed by its Ethernet NIC

e Sequence of frames and contents of frame can be
examined in detail down to individual bytes

44

22

Et Top Pane Middle Pane
shows shows
frame/packet encapsulation for

a given frame
-
1 0.
2 0,129976 128.100.100,128 128.100.11.13 A 5.247.200 A 64.15.247.24
3 0.131524 128.100.11.13 64.15.247. 200 TCP FA38689752 ack=0 win=16384 Len=0
4 0.168286 84.15.247.200 128.100.11.13 TCP http » 1127 [sv Seq=1396200325 Ack=3538680753 W
5 0.168320 128.100.11.13 64,15, 247, 200 TCP 1127 » http [20=3638689753 Ack=1335200326 win=17
6 0.168688 128.100.11.13 684,15, 247,200 HTTP GET / HTTR/L.
7 0.205439 64.15.247.200 128.100.11.13 TCP http » 1127 5eq=1396200326 Ack=36386%0402 win=32
8 0.236676 64.15.247.200 128.100.11.13 HTTP HTTR/1.1 200
k
EFrame 1 (75 bytes on wire, 75 hytes captured) A
@ Ethernet II, Src: 00:90:27:96:b8:07, Dst: 00:80:52:ea:k5:00
E Internet Protocol, Src addr: 128.100.11.13 (128.100.11.13), Dst Addr: 128.100.100.128 (128.100.100.128)
@ user Datagram Protocal, src Port: 1126 (11260, Dst Port: domain (53)
EHoomain Mame System (guery)
/
0000 00 e0 52 ea hS 00 00 90 27 9% h8 07 08 00 45 00 R L E. A
0010 00 3d 54 41 00 00 80 11 76 19 80 &4 Oh 0d 80 64 L=TAG L v
0020 64 80 04 66 00 35 00 29 49 83 00 a5 0L 00 00 0L d..f.5.0 I.......
0030 00 00 00 00 OO0 00 03 77 77 77 OF 6e 79 74 6% 6d woww., ytim
0040 65 73 03 63 67 6d 00 00 01 Q0 Q1 es.com.. .. /
Fiter]|
Bottom Pane shows hex & text
-
qce
I
Request &
-
. _ T g R esponse
L129076 128,100,100, 128 128 100.11.13 response 24

T = T e e e
V168286 64.15.247.200 128.100.11.13 TCP http » 1127 [svn, ACK] Seg= = 53 W
L168320 128.100.11.13 64,15,247, 200 TP 1127 » http [ACK] Seq=3638 Ack=1386200326 Win=17

.205439 84.15. 247,200 128.100.11.13 TCP http » 1127 [ACK] Seq=1396200326 Ack=3638850402 wWin=32
L 236676 64.15.247.200 128.100.11.13 HTTP HTTP/1.1 200 OK

@ o B

0
0
0. 168058 125.100.11.13 B4, 15.247. 200 ATTP GET 7 HTTP/L.1
0
0

[l T

BEFrame 1 (75 bytes on wire, 75 hytes captured)

@ Eethernet II, Src: 00:90:27:96:b8:07, Dst: 00:e0:52:ea:h5:00

B Internet Protocol, Src Addr: 128,100,11.13 (128.100,11.13), Dst Addr: 128.100,100,128 (128.100.100.128)
Euser Datagram protocol, Src Port: 1126 (11267, Dst Port: domain €530

Eoomain Mame System (guery)

ol I—

[-] |
0000 00 eC 52 ea hS 00 00 90 27 96 h8 07 08 00 45 00 SR o E. A
0010 00 3d 54 41 00 00 80 11 7% 19 80 &4 Oh Od B0 64 =TAGL L v,

0020 ©4 80 04 &6 00 35 00 29 49 83 00 a5 01 00 00 01 d..f.5.0 I.......

0030 00 00 00 00 00 00 03 77 77 77 07 8e 70 74 60 6d W oW, Myt im

0040 65 73 03 63 6f 6d 00 00 01 00 Q1 es.com.. ... /
Filter. I j Reset| Apply |F|Ie: nytimespackets

23

Middle pane: Encapsulation

@ nytimespackets - Ethereal
Eile Edit Eapture Eisp\ay IUU\S

Ethernet Frame

Destination

»

B Ethernet II, Src: 00:90:27:96:b8:07, DsST: 00:e0:52:ea:h5:00
pestination: 00:e0:52:ea:h5:00 CFoundry _ga:h5:00)
Source: 00:90:27:96:h8:07 (Intel_%96:b3:07)
Type: IP_(0x08000

version:
Header Ten

B pifferenti ices Field: ox00 (DSCP 0x00: Default;

Ethernet

Total

&+ age Protocol Type Destination and
Fragm
;;gsoio'l :HT(CEI; Ec_)xoe) SOU rce
foiron: Toa T e L ss T 001 1) Addresses

pestination: 64.15.247.200 (64.15.247.200)
®E Transmission control Protocol, sre Port: 1127 (1127), DST POrt: hitp (MO0, Seq: J0I00NOro D, Aok 130620032
E Hypartext Transfer Protocol 7

|

50 C.....GE T / HTTP
0040 2f 31 2e 31 0d Da 41 63 63 65 70 74 3a 20 69 6d /l.1..Ac cept: im /

F\\ter:“ j Hesetl Apply | File: nytimespackets

apsulation
And a lot of

other stuff!

A

IP Packet B

EFrame & (703 bytes o e, 703 hytes captured)

=y
B Ethernet II, sSrc: T27:96:b8:07, Dst: 00:e0:52:ea:h5:00
pestination: 152:2a:b5:00 (Foundry__ea:hs:00)
source: 00:90N37:96:bB:07 (Intel_96:h3:07)
7|

T
B Internet Protocol, sSrc Addr: 128.100.11.13 (128.100.11.132), Dst Addr: 64.15.247.200 (64.15.247.200)
varsion: 4
Header Tlength: 20 bytes
E pifferentiated services Field: Oxoo (pscp 0x00: pefault; ECW: 0x00)
Total Length: 639
Identification: 0x5445
EFlags: 0x04
Fragment offset: 0
Time to Tive: 128
Frotocol: TCP (Ox06)
HRader checksum: Oxedb8 (correct)
=1 ce: 128.100.11.13 (128.100.11.13)
D ination: &4.15.247.200 (84.15.247.200]
i E| el

IP Source and
Destination
Addresses

Hypel \Tr‘amsfer‘ Protocol
-1 \ | =

N\
Qo000 2a b% 00 00 80 27 96 b3 07 08 00 45 00 e R E. A |
0010 5 40 00 80 06 e0 b& 80 64 Ob 0d 40 oOf .. TEB. d..@.
o 53 38 53 88 50 18 ...0.P.. ..385.P.
Pro 2f 20 48 54 54 50 GE T / HTTR
£

tocol Type 074 35 30 65 ea Alillac cepriom
A Hesetl ApplylFHe nytimespackets

24

Summary

e Encapsulation is key to layering

e IP provides for transfer of packets across

diverse networks
e TCP and UDP provide universal

communications services across the Internet

e Distributed applications that use TCP and
UDP can operate over the entire Internet

e Internet names, IP addresses, port numbers,
sockets, connections, physical addresses

49

Applications and
Layered Architectures

b
5,
N "_«;ﬁ;éa

.S

CONMUNCATION ETHORHS

Sockets

50

25

Socket API

e Berkeley UNIX Sockets API

e API (Application Programming Interface): provides a
standard set of functions that can be called by
applications

e Abstraction for applications to send & receive data
e Applications create sockets that “plug into” network
e Applications write/read to/from sockets

e Implemented in the kernel

o Facilitates development of network applications

e Hides details of underlying protocols & mechanisms

e Also in Windows, Linux, and other OS’s

51

Communications through Sockets

Client Server
Socket Application 1 ‘Application 2) S0Cket
interface interface
descriptor User User descriptor
Kernel Kernel
Socket Socket
« Application references a
socket through a descriptor
port number « Socket bound to a port number port number
Underlying Underlying
communication communication
protocols protocols

D 52

26

Stream mode of service

Connection-oriented e Connectionless
e First, setup connection e Immediate transfer of one
between two peer block of information

(boundaries preserved)
e No setup overhead & delay

e Destination address with
each block

e Send/receive to/from

_ _ multiple peer processes
e Multiple write/read between | oot effort service only

pfaer processes. » Possible out-of-order
e Finally, connection release o Possible loss

e Uses TCP e Uses UDP

application processes

e Then, reliable bidirectional
in-sequence transfer of byte
stream (boundaries not
preserved in transfer)

53

Client & Server Differences

e Server
e Specifies well-known port # when creating socket
e May have multiple IP addresses (net interfaces)
o Waits passively for client requests

e Client

Assigned ephemeral port #

Initiates communications with server

Needs to know server’s IP address & port #
DNS for URL & server well-known port #

Server learns client’'s address & port #

54

27

Socket Calls for Connection-
Oriented Mode

Server does Passive Open
Server e socket creates socket to listen for connection
requests
e Server specifies type: TCP (stream)

socket call returns: non-negative integer descriptor,
or -1 if unsuccessful

} Client

v
Blocks Connect
P negotiation - . . .

55

Socket Calls for Connection-
Oriented Mode

Server does Passive Open
Server e bind assigns local address & port # to socket with

specified descriptor
[]

Can wildcard IP address for multiple net interfaces
bind call returns: 0 (success); or -1 (failure)

e Failure if port # already in use or if reuse option not
set .
1 Client
Blocks Connect
B negotiation »
Data__-----

’

28

Socket Calls for Connection-
Oriented Mode

Server does Passive Open
Server e listen indicates to TCP readiness to receive
connection requests for socket with given descriptor

e Parameter specifies max number of requests that may
be queued while waiting for server to accept them

e listen call returns: 0 (success); or -1 (failure)

} Client

v
Blocks Connect
P negotiation - . . .

57

Socket Calls for Connection-
Oriented Mode

Server does Passive Open
Server o Server calls accept to accept incoming requests

e accept blocks if queue is empty

1 Client
t
Blocks Connect
B negotiation »

’

29

Socket Calls for Connection-
Oriented Mode

Client does Active Open

Server °

.

socket creates socket to connect to server

Client specifies type: TCP (stream)
socket call returns: non-negative integer descriptor,

or -1 if unsuccessful

} Client

Blocks Connect
P negotiation - . . .

59

Socket Calls for Connection-

[X X J
[X X X
[X X N}
. : : o
Oriented Mode :
Client does Active Open
Server e connect establishes a connection on the local socket
- with the specified descriptor to the specified remote
socket()
address and port #
e connect returns 0 if successful; -1 if unsuccessful
1 Client
Bloiks Note: connect
Connect o
nitiates TCP three-wa:
s e negotiation Tt) If'}aI.I'I]dshaKe W y

'

30

Socket Calls for Connection-
Oriented Mode

accept wakes with incoming connection request

Server

(success); or -1 (failure)
Client & server use new socket for data transfer

e Original socket continues to listen for new requests
accept()
Blocks Connect
P negotiation - . . .

61

accept fills client address & port # into address structure
e accept call returns: descriptor of new connection socket

Socket Calls for Connection-
Oriented Mode

Data Transfer
Server o Client or server call write to transmit data into a
- connected socket
socket() - i . .
e write specifies: socket descriptor; pointer to a buffer;
amount of data; flags to control transmission behavior

e write call returns: # bytes transferred (success); or -1

(failure); blocks until all data transferred
acoept(
Blocks Connect
B negotiation »

)

31

Socket Calls for Connection-
Oriented Mode

Data Transfer
Server o Client or server call read to receive data from a

- connected socket
socket()

e read specifies: socket descriptor; pointer to a buffer;
amount of data

e read call returns: # bytes read (success); or -1 (failure);

blocks if no data arrives

v Client

N ¢k Note: write and read
ocks Connect can be called multiple
B negotiation - - - .

times to transfer byte
streams in both
directions

63

Socket Calls for Connection- ssee
Oriented Mode 3

Connection Termination
Server o Client or server call close when socket is no longer

needed
[}

close specifies the socket descriptor
close call returns: 0 (success); or -1 (failure)

v Client

accept() -
BI ¢k socket() Note: close initiates
ocks Connect
- TCP graceful close
D negotiation - . . . »/connect() g

sequence

64
close

32

Example: TCP Echo Server

/% A simple echo server using TCP */
#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>
#define SERVER_TCP_PORT 3000
#define BUFLEN 256

int mainint argc, char **argv)

int n, bytes_to_read;
int sd, new_sd, client_len, port;
struct sockaddr_in server, client;

char *bp, buf[BUFLEN];

switch(arge) {
case 1:

port = SERVER_TCP_PORT;
break;

case 2:
port = atoi(argv[1]);
break;

default:
fprintf(stderr, “Usage: %s [port]\n", argv[0]):
exit(1);

b

/* Create a stream socket */

if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
fprintf(stderr, “"Can"t create a socket\n");
exit(1);

/* Bind an address to the socket */

bzero((char *)&server, sizeof(struct sockaddr_in));
server.sin_family = AF_INET;

server.sin_port = htons(port);
server.sin_addr.s_addr = htonl (INADDR_ANY);
if (bind(sd, (struct sockaddr *)&server,

sizeof(server)) == -1) {
fprintf(stderr, “Can”t bind name to socket\n™);
exit(1);

3

/* queue up to 5 connect requests */
listen(sd, 5);

while (1) {
client_len = sizeof(client);
i s

(¢ accept(sd, (struct sockaddr *)é&c
&client_len)) -1
fprintf(stderr, "Can"t accept client\n");
exit(1);
bp = buf;

bytes_to_read = BUFLEN;
while ((n = read(new_sd, bp, bytes_to_read)) > 0) {
bp +=
bytes_to_read

Fl

n;
3

printf("Recd: %s\n", buf);
write(new_sd, buf, BUFLEN);

printf(Sent: %s\n", buf);
close(new_sd);

3
close(sd
return(0);

65

Example: TCP Echo Client

/* A simple TCP ¢
#include <stdio.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>

ent */

#include <netinet/in.h>
#define SERVER_TCP_PORT 3000
#define BUFLEN 256

int argc, char **argv)

n, bytes_to_read;

sd, port;
struct hostent *hp;
struct sockaddr_in server;

char *host, *bp, rbuf[BUFLEN], sbuf[BUFLEN];

switch(arge) {
case 2:

host = argv[1];
port = SERVER_TCP_PORT;
break;

case 3:
host = argv[1];
port = atoi(argv[2]);
break;

default:
fprintf(stderr, “Usage: %s host [port]\n", argv[0]);
exit(1);

3

/* Create a stream socket */

it ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
fprintf(stderr, “Can"t create a socket\n");
exit(l);

3

bzero((char *)&server, sizeof(struct sockaddr_in));
server.sin_family = AF_INET;

_port = htons(port);

gethostbynane(host)) == NULL) {
printf(stderr, “Can"t get server's address\n");
exit(1);

3
beopy(hp->h_addr, (char *)&server.si

_addr, hp->h_length);

/* Connecting to the server */
(connect(sd, (struct sockaddr *)&server,

sizeof(server)) == -1
fprintf(stderr, “Can"t connect\n");
exit(1);

printf(“Connected: server's address is %s\n", hp->h_name);

printf(Transmit:\n");
gets(sbuf);
write(sd, sbuf, BUFLEN);

printf("Receive:\n");

bp = rbuf;

bytes_to_read = BUFLEN;

while ((n = read(sd, bp, bytes_to_read)) > 0) {
bp += n;
bytes_to_read

3
printf(%s\n”, rbuf);

close(sd);
return(0);

66

33

Socket Calls for Connection-Less
Mode

Server started

Server e socket creates socket of type UDP (datagram)
- e socket call returns: descriptor; or -1 if unsuccessful
SEEH e bind assigns local address & port # to socket with

Client

socket)

v
Blocks until server_______ IE)_a_t_a_ ———————
""" sendto()

client

___________ Data
1

specified descriptor; Can wildcard IP address

67

Socket Calls for Connection-Less
Mode

e recvfrom copies bytes received in specified socket

into a specified location
e recvftrom blocks until data arrives

Server

Client

socket)

'
Blocks until server_______ I_D_qt_a_ -------

sendto()

client

------------ Data
1 """""" > |recvirom()

68

34

Socket Calls for Connection-Less | $33:
[X X
Mode 3
Client started
Server e socket creates socket of type UDP (datagram)
e socket call returns: descriptor; or -1 if unsuccessful

Client

<2t

v
Blocks until server_______ IE)_a_t_a_ ———————

sendto()

client

___________ Data
1
.

Socket Calls for Connection-Less
Mode

Client started
Server e sendto transfer bytes in buffer to specified socket
e sendto specifies: socket descriptor; pointer to a
buffer; amount of data; flags to control transmission
behavior; destination address & port #; length of
destination address structure

e sendto returné:l_ # Pytes sent; or -1 if unsuccessful
ien

socket)

'
Blocks until server_______ I_D_qt_a_ -------

sendto()

client

------------ Data
1 """""" > |recvirom()

m

35

Socket Calls for Connection-Less | sss-
[
Mode ::
recvfrom wakes when data arrives
Server e recvfrom specifies: socket descriptor; pointer to a
buffer to put data; max # bytes to put in buffer; control
flags; copies: sender address & port #; length of

sender address structure
e recvfrom returns # bytes received or -1 (failure)

Client

socket(_
Note: receivefrom

v
Blocks until server_______ IE)_a_t_a_ ———————

returns data from at
most one send, i.e.

from one datagram

sendto()

client

___________ Data
1
.

Socket Calls for Connection-Less
Mode

Socket Close
Server ® Clientor server call close when socket is no longer
needed

e close specifies the socket descriptor
close call returns: 0 (success); or -1 (failure)

Client

socket)

'
Blocks until server_______ I_D_qt_a_ -------

sendto()

client

------------ Data
1 """""" > |recvirom()

"

36

Example: UDP Echo Server

/* Echo server using UDP */
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>

#include <netinet/in.h>
#define SERVER_UDP_PORT 5000
#define MAXLEN 4096

int mainint argc, char **argv)

int sd, client_len, port, n;
char buf[MAXLENT:

struct sockaddr_i

server, client;

switch(arge) {

case 1:
port = SERVER_UDP_PORT;
break;

case 2:
port = atoi(argv[1]);
break;

default:
fprintf(stderr, “Usage: %s [port]\n", argv[01):
exit(1);

b

/* Create a datagram socket */
if ((sd = socket(AF_INET, SOCK_DGRAM, 0)

- {
fprintf(stderr, “Can"t create a socket\n");
exit(1);

/* Bind an address to the socket */
bzero((char *)&server, snzeof(server))
server.sin_family = AF_INET
server.sin_port = htcuns(pc-rt)v
server.sin_addr.s_addr = htonl (INADDR_ANY);
if (bind(sd, (struct sockaddr *)&server,
sizeof(server)) == -1) {

fprintf(stderr, "Can"t bind name to socket\n);
exit(1);

3

while (1) {
cllent len = sizeof(client);
(n = recvfrom(sd, buf, MAXLEN, 0,
(struct sockaddr *)&client, &client_len)) < 0) {
fprintf(stderr, "Can"t receive datagram\n');
exit(1);

if (sendto(sd, buf, n, 0O,

(struct sockaddr *)&client, client_len) n {
fprintf(stderr, "Can"t send datagram\n™);
exit(1);

3
close(sd);
return(0

73
. [X3
- [
Xample: cno Ien o
®
[X J
[J
#include <stdio.h>
#include <string.h> else
#include <sys/time.h> fprintf(stderr,
#include <netdb.h> “Usage: %s [-s data_size] host [port]\n", pname):
#include <sys/types.h> exit(1);
#include <sys/socket.h> 3}
#include <netinet/in.h>
#define SERVER_UDP_PORT 5000 it ((sd = socket(AF_INET, SOCK_DGRAM, 0)) == -1)
#define MAXLEN 4096 fprintf(stderr, “"Can"t create a socket\n");
#define DEFLEN 64 exit(1);

long delay(struct timeval t1, struct timeval t2)
{

Tong d;

d = (t2.tv_sec - tl.tv_sec) * 1000;
d += ((t2.Ttv_usec - tl.tv_usec + 500) / 1000);

return(d);

nt argc, char **argv)

int data_size = DEFLEN port = SERVER_UDP_PORT;
t i, j. sd, server_|

char *pname, *host, rbuf[MAXLEN] SbUF[MAXLEN] ;

struct hostent *hp;

struct sockaddr server;

struct start, end;

unsigned Iong address;

pname = argv[0];
arge-
argv++
if (argc > 0 && (stremp(*argv,

3
if (argc > 0)

) ==0) {
if (—-argc > 0 && (data_size = atoi (*++argv))) {

else {
fprintf(stderr,

“Usage: %s [-s data_size] host [port]\n”, pname):

exit(1);

{
ost = *argv;
|f (--arge > 0)
port = atoi(*++argv);

¥
bzero((char *)&server, sizeof(server)):
server.sin_family = AF_ INET'
server.sin_port = htons(por:
if ((hp = gethostbyname(host)) = NULL) {
fprintf(stderr, "Can"t get server's IP address\n");
exit(1);

3
beopy(hp->h_addr, (char *) &server.sin_addr, hp->h_length);

it (data_size > MAXLEN) {
fprintf(stderr, “Data is too big\n™);
exit(l);

3

for (i = 0 i < data_size; i++) {

< 26) ? % 265
sbuf[l] = ra" B

}//datalsabc.)z, b,

gettimeofday(&start, NULL); /* start delay measurement */

server_len = sizeof(server);

it (sendto(sd, sbuf, data_size, 0, (struct sockaddr *)

&server, server_len) == -1) {
fprintf(stderr, “sendto error\n");
exit(1);

X

if (recvfrom(sd, rbuf, MAXLEN, 0, (struct sockaddr *)
&server, &server_len) < 0) {
fprintf(stderr, “recvfrom error\n”);
exit(1);

X

gettimeofday(&end, NULL); /* end delay measurement */
printf(“round-trip delay=ld ms.\n", delay(start, end)):
if (strncmp(sbuf, rbuf, data_size) != 0)

tf("Data is corrupted\n

p:
close(sd); 74

return(0);

37

