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Abstract. We consider a distributed server system and ask which policy should be used for assigning
jobs (tasks) to hosts. In our server, jobs arenot preemptible. Also, the job’s service demand isnot
known a priori. We are particularly concerned with the case where the workload is heavy-tailed,
as is characteristic of many empirically measured computer workloads. We analyze several natural
task assignment policies and propose a new oneTAGS (Task Assignment based on Guessing Size).
The TAGS algorithm is counterintuitive in many respects, including loadunbalancing,non-work-
conserving, andfairness. We find that under heavy-tailed workloads,TAGS can outperform all task
assignment policies known to us by several orders of magnitude with respect to both mean response
time and mean slowdown, provided the system load is not too high. We also introduce a new practical
performance metric for distributed servers calledserver expansion. Under the server expansion metric,
TAGS significantly outperforms all other task assignment policies, regardless of system load.

Categories and Subject Descriptors: C.1.4 [Processor Architectures]: Parallel Architectures—
distributed architectures; C.4 [Performance of Systems]: design studies; D.4.8 [Operating
Systems]: Performance—modeling and prediction; queueing theory

General Terms: Design, Performance
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1. Introduction

In recent years, distributed servers have become increasingly common because they
allow for increased computing power while being cost-effective and easily scalable.

In a distributed server system, jobs (tasks) arrive and must each be dispatched
to exactly one of several host machines for processing. We assume for simplicity
that these host machines are identical and that there is no cost (time required)
for dispatching jobs to hosts. The rule for assigning jobs to host machines is
known as thetask assignment policy. The choice of the task assignment policy
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TABLE I. EXAMPLES OFDISTRIBUTED SERVERSDESCRIBED BY THEARCHITECTURAL MODEL OFTHIS

PAPER. THE SCHEDULERSUSED ARELOAD-LEVELER, LSF, PBS,OR NQS. THESESCHEDULERSTYPICALLY

ONLY SUPPORTRUN-TO-COMPLETION (NONPREEMPTIVE) [PARSONS ANDSEVCIK 1997]

Name Location No. Hosts Host Machine
Xolas [Leiserson 1998b] MIT Lab for Computer Science 8 8-processor Ultra HPC 5000 SMP
Pleiades [Leiserson 1998a]MIT Lab for Computer Science 7 4-processor Alpha 21164 machine
J90 distributed server NASA Ames Research Lab 4 8-processor Cray J90 machine
J90 distributed server Pittsburgh Supercomputing 2 8-processor Cray J90 machine

[PSC Cray 1998] Center
C90 distributed server NASA Ames Research Lab 2 16-processor Cray C90 machine

[Supercomputing 1998]

has a significant effect on the performance perceived by users. Designing a dis-
tributed server system often comes down to choosing the “best” task assignment
policy for the given model and user requirements. The question of which task
assignment policy is “best” is an age-old question that still remains open for
many models.

In this article, we consider the particular model of a distributed server system in
which jobs arenot preemptible—that is, each job isrun-to-completion. Jobs can be
aborted, but then all work is lost and the job must be restarted from scratch. Our
model is motivated by distributed servers for batch computing at Supercomputing
Centers. For these distributed servers, each host machine is usually a multiprocessor
machine (e.g., an 8-processor Cray J90) and each job submitted to the distributed
server is a parallel job, intended to run on a single host. In such a setup, jobs are
usually run-to-completion, rather than time-shared, for several reasons: First, the
memory requirements of jobs tend to be huge, making it very expensive to swap
out a job’s memory [Feitelson et al. 1997]. Thus, timesharing between jobs only
makes sense if all the jobs being timeshared fit within the memory of the host,
which is very unlikely. Also, many operating systems that enable timesharing for
single-processor jobs do not facilitate preemption among several processors in a
coordinated fashion [Parsons and Sevcik 1997]. Examples of distributed server
systems that fit the above description are given in Table I.

Lastly, we assume thatno a priori informationis known about the job at the
time when the job arrives. In particular, theprocessing requirementof the job is
not known. We use the termsprocessing requirement, CPU requirement, service
demand, andsize interchangeably. Many studies have shown that even in cases
where user estimates of their job processing requirements are available, those esti-
mates are grossly inaccurate. For example, one study shows that for 38% of jobs,
the actual processing requirement is only 4% of the user-predicted requirement,
and for over 95% of jobs the actual processing requirement is under 10% of the
user-predicted requirement [Feitelson and Jette 1997].

Figure 1 is one illustration of a distributed server. In this illustration, arriving jobs
are immediately dispatched by the central dispatcher to one of the hosts and queue
up at the host waiting for service, where they are served in first-come-first-served
(FCFS) order. Observe however that our model in general does not preclude the
possibility of having a central queue at the dispatcher where jobs might wait before
being dispatched.

Our main performance goal, in choosing a task assignment policy, is to min-
imize mean response timeand more importantlymean slowdown. A job’s slow-
down is its waiting time divided by its service requirement. All means are per-job
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FIG. 1. Illustration of a distributed server.

averages. Mean slowdown is important because it is desirable that a job’s delay
be proportional to its processing requirement [Downey 1997; Rudolph and Smith
2000; Harchol-Balter and Downey 1997]. Users are likely to anticipate short delays
for short jobs, and are likely to tolerate long delays for longer jobs. A secondary
performance goal isfairness. We adopt the following definition of fairness: All
jobs, long or short, should experience the same expected slowdown. In particu-
lar, long jobs should not be penalized—slowed down by a greater factor than are
short jobs.1

Observe that for the architectural model we consider in this article, memory usage
is not an issue with respect to scheduling. Recall that hosts are identical and each
job has exclusive access to a host machine and its memory. Thus, a job’s memory
requirement is not a factor in scheduling. However, CPU usage is very much an
issue in scheduling.

Consider some task assignment policies commonly proposed for distributed
server systems: In theRandom task assignment policy, an incoming job is sent
to Hosti with probability 1/h, whereh is the number of hosts. This policy equal-
izes the expected number of jobs at each host. InRound-Robin assignment, jobs
are assigned to hosts in a cyclical fashion with thei th job being assigned to
Host i modh. This policy also equalizes the expected number of jobs at each
host, and has slightly less variability in interarrival times than doesRandom. In
Shortest-Queue assignment, an incoming job is immediately dispatched to the
host with the fewestnumberof jobs. This policy has the benefit of trying to equalize
the instantaneous number of jobs at each host, rather than just the expected number
of jobs.

Ideally, we would like to send a job to the host that has the least total outstanding
work (work is the sum of the job processing requirements at the host) because that
host would afford the job the shortest waiting time. However, we don’t know a
priori which host currently has the least work, since we don’t know job process-
ing requirements (sizes). Imagine for a moment that we did, however, know job
sizes. Then we could imagine aLeast-Work-Remaining policy that sends each
job to the host with the currently least remaining work. It is in fact possible to

1 For example, Processor-Sharing (which requires infinitely-many preemptions) is ultimately fair in
that every job experiences the same expected slowdown.
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FIG. 2. The (a)Least-Work-Remaining policy and the (b)Central-Queue policy are equivalent.

achieve the performance ofLeast-Work-Remaining withoutknowing job sizes:
Consider a different policy, calledCentral-Queue. TheCentral-Queue policy
holds all jobs at the dispatcher in a FCFS queue, and only when a host is free
does the host request the next job. It turns out thatCentral-Queue is equivalent
to Least-Work-Remaining for any sequence of job requests (see Harchol-Balter
et al. [1999] for a rigorous proof and Figure 2 for an illustration). Thus, since
Central-Queue does not require a priori knowledge of job sizes, we can in fact
achieve the performance ofLeast-Work-Remainingwithout requiring knowledge
of the job sizes.

It may seem thatLeast-Work-Remaining is the best possible task assign-
ment policy. In fact, previous literature suggests that it is the optimal policy if
the job size distribution isexponential(see Section 2). This is not in conflict with
our results.

But what if job size distribution is not exponential? We are motivated in this
respect by the increasing evidence for high variability in job-size distributions, as
seen in many measurements of computer workloads. In particular, measurements
of many computer workloads have been shown to fit heavy-tailed distributions with
very high variance, as described in Section 3—much higher variance than that of
an exponential distribution. Is there a better policy thanLeast-Work-Remaining
when the job-size variability is characteristic of empirical workloads? In evaluat-
ing various policies, we will be interested in understanding the influence of job
size variability on the decision of which policy is best. For analytical tractability,
we assume that the arrival process is Poisson—previous work indicates that the
variability in the arrival process is much less critical to choosing a task assignment
policy than is the variability in the job-size distribution [Schroeder and Harchol-
Balter 2000].

In this article, we propose a new algorithm calledTAGS—Task Assignment by
Guessing Size—which is specifically designed for high variability workloads.TAGS
works by associating a time limit with each host. A job is run at a host up to the
designated time limit associated with the host. If the job has not completed at
this point, it is killed and restarted from scratch at a new host. We prove analyti-
cally that when job sizes show the degree of variability characteristic of empirical
(measured) workloads, theTAGS algorithm can outperform all the above-mentioned
policies byseveral orders of magnitude. In fact, we show that the more heavy-
tailed the job-size distribution, the greater the improvement ofTAGS over the
other policies.
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The above improvements are contingent on the system load not being too high.2

In the case where the system load is high, we show that all the policies perform
so poorly that they become impractical, andTAGS is especially negatively affected.
However, in practice, if the system load is too high to achieve reasonable perfor-
mance, one adds new hosts to the server (without increasing the outside arrival rate),
thus dropping the system load, until the system behaves as desired. We refer to the
“number of new hosts that must be added” as theserver expansionrequirement.
We show thatTAGS outperforms all the previously mentioned policies with respect
to theserver expansionmetric (i.e., givenany initial system load, TAGS requires far
fewer additional hosts to perform well).

We describe three flavors ofTAGS. The first,TAGS-opt-slowdown, is designed
to minimize mean slowdown. The second,TAGS-opt-waitingtime, is designed
to minimize mean waiting time. Although very effective, these algorithms are not
fair in their treatment of jobs. The third flavor,TAGS-opt-fairness, optimizes
fairness. While managing to be fair,TAGS-opt-fairness still achieves mean
slowdown and mean waiting time close to the other flavors ofTAGS. Thepoint of
this articleis not to promote theTAGS algorithm in particular, but rather to promote
an appreciation for the unusual and counterintuitive ideas on whichTAGS is based,
namely: loadunbalancing,non-workconserving, andfairness.

Section 2 elaborates on previous work. Section 3 provides the necessary back-
ground on measured job size distributions and heavy-tails. Section 4 describes the
TAGS algorithm and all its flavors. Section 5 shows results of analysis for the case
of two hosts, and Section 6 shows results of analysis for the multiple-host case.
Section 7 explores the effect of less-variable job-size distributions. Lastly, we con-
clude in Section 8. Details on the analysis ofTAGS are described in the Appendix.

2. Previous Work on Task Assignment

2.1. TASK ASSIGNMENT WITH NO PREEMPTION. The problem of task assign-
ment in a model like ours (no preemption3 and no a priori knowledge) has been
extensively studied, but many basic questions remain open.

One subproblem which has been solved is that of task assignment under the
further restrictionthat all jobs be immediately dispatched to a host upon arrival.
Under this restricted model, Winston showed that when the job-size distribution
is exponential and the arrival process is Poisson, then theShortest-Queue task
assignment policy is optimal [Winston 1977]. In this result, optimality is defined
as maximizing the discounted number of jobs that complete by some fixed timet .
Ephremides et al. [1980] showed thatShortest-Queue also minimizes the ex-
pected total time for the completion of all jobs arriving by some fixed timet , under
an exponential job size distribution and arbitrary arrival process. Koole et al. [1999]

2 For a distributed server, system load is defined as follows:

System load= Outside arrival rate·Mean job size/Number of hosts.

For example, a system with 2 hosts and system load .5 has same outside arrival rate as a system with
four hosts and system load .25. Observe that a four host system with system loadρ has twice the
outside arrival rate of a two-host system with system loadρ.
3 All the results here assume FCFS service order at each host machine.
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showed thatShortest-Queue is optimal if the job-size distribution has Increasing
Likelihood Ratio (ILR). The actual performance of theShortest-Queue policy
is not known exactly, but the mean response time is approximated by Nelson and
Phillips [1989, 1993]. Whitt [1986] has shown that as the variability of the job size
distribution grows,Shortest-Queue is no longer optimal. Whitt does not suggest
which policy is optimal. Koole et al. [1999] later showed thatShortest-Queue is
not even optimal for all job-size distributions with Increasing Failure Rate.

Under the model assumed in this article, but withexponentiallydistributed
job sizes, several papers [Nelson and Phillips 1989, 1993] claim that the
Central-Queue (or equivalently,Least-Work-Remaining) policy is optimal.
Wolff [1989] suggests thatLeast-Work-Remaining is optimal because it max-
imizes the number of busy hosts, thereby maximizing the downward drift in the
continuous-time Markov chain whose states are the number of jobs in the system.

Another model that has been considered is the case of no preemption but where
the size of each job isknownat the time of arrival of the job. Within this model, the
SITA-E algorithm (see Harchol-Balter et al. [1999]) has been shown to outperform
the Random, Round-Robin, Shortest-Queue, and Least-Work-Remaining
algorithms by several orders of magnitude when the job-size distribution is heavy-
tailed. In contrast toSITA-E, theTAGS algorithm does not require knowledge of job
size. Nevertheless, for not-too-high system loads (<.5), TAGS improves upon the
performance ofSITA-E by several orders of magnitude for heavy-tailed workloads.

2.2. WHENPREEMPTIONISALLOWED. Throughout this article, we maintain the
assumption that jobs arenotpreemptible. That is, once a job starts running, it can not
be stopped and recontinued where it left off. By contrast, there exists considerable
work on thevery differentproblem where jobs are preemptible and maybe even
migrateable (see Harchol-Balter and Downey [1997] for many citations).

2.3. TAGS-LIKE ALGORITHMS. The idea of purposely unbalancing load has
been suggested previously in Crovella et al. [1998a] and in Bestavros [1997],
under different contexts from our article. In both these papers, it is assumed that
job sizes areknowna priori. In Crovella et al. [1998a], a distributed system with
preemptiblejobs is considered. It is shown that, in the preemptible model, mean
waiting time is minimized bybalancingload; however, mean slowdown is mini-
mized byunbalancing load. In Bestavros [1997], real-time scheduling is considered
where jobs have firmdeadlines. In this context, the authors propose “load profiling,”
which distributes load so that the probability of satisfying the utilization require-
ments of incoming jobs is maximized.

To the best of our knowledge, theTAGS idea of associating artificial “time-
limits” with machines, killing jobs that exceed the time-limit on their ma-
chines, and restarting those jobs on hosts with higher time-limits, has not been
considered before.

3. Heavy Tails

As described in Section 1, we are concerned with how the distribution of job sizes
affects the decision of which task assignment policy to use.

Many application environments show a mixture of job sizes spanning many orders
of magnitude. In such environments, there are typically many short jobs, and fewer



266 MOR HARCHOL-BALTER

FIG. 3. Measured distribution of UNIX process CPU lifetimes, taken from Harchol-Balter and
Downey [1997]. Data indicates fraction of jobs whose CPU service requirement exceedsT seconds,
as a function ofT .

long jobs. Much previous work has used theexponentialdistribution to capture
this variability, as described in Section 2. However, recent measurements indicate
that for many applications the exponential distribution is a poor model and that a
heavy-taileddistribution is more accurate. In general, a heavy-tailed distribution is
one for which

Pr{X > x} ∼ x−α,

where 0< α < 2. The simplest heavy-tailed distribution is theParetodistribution,
with probability mass function

f (x) = αkαx−α−1, α, k > 0, x ≥ k,

and cumulative distribution function

F(x) = Pr{X ≤ x} = 1−
(

k

x

)α
.

A set of job sizes following a heavy-tailed distribution has the following properties:

(1) Decreasing failure rate: In particular, the longer a job has run, the longer it is
expected to continue running.

(2) Infinite variance (and ifα ≤ 1, infinite mean).
(3) The property that a tiny fraction (<1%) of the very longest jobs comprise over

half of the total load. We refer to this important property throughout the article
as theheavy-tailed property.

The lower the parameterα, the more variable the distribution, and the more pro-
nounced is the heavy-tailed property, that is, the smaller the fraction of long jobs
that comprise half the load.

As a concrete example, Figure 3 depicts graphically on a log-log plot the mea-
sured distribution of CPU requirements of over a million UNIX processes, taken
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from Harchol-Balter and Downey [1997]. This distribution closely fits the curve

Pr{Process CPU requirement> T} = 1

T
.

In Harchol-Balter and Downey [1997], it is shown that this distribution is present
in a variety of computing environments, including instructional, research, and
administrative environments.

In fact, heavy-tailed distributions appear to fit many recent measurements of
computing systems. These include, for example:

—Unix process CPU requirements measured at Bellcore: 1≤ α ≤ 1.25 [Leland
and Ott 1986].

—Unix process CPU requirements, measured at UC Berkeley:α ≈ 1 [Harchol-
Balter and Downey 1997].

—Sizes of files transferred through the Web: 1.1≤ α ≤ 1.3 [Crovella and Bestavros
1997; Crovella et al. 1998b].

—Sizes of files stored in Unix filesystems: [Irlam 1994].
—I/O times: [Peterson and Adams 1996].
—Sizes of FTP transfers in the Internet:.9≤ α ≤ 1.1 [Paxson and Floyd 1995].
—Pittsburgh Supercomputing Center (PSC) workloads for distributed servers

consisting of Cray C90 and Cray J90 machines [Schroeder and Harchol-
Balter 2000].4

In most of these cases, where estimates ofα were made,α tends to be close to 1,
which represents very high variability in job-service requirements.

In practice, there is some upper bound on the maximum size of a job, because
files only have finite lengths. Throughout this article, we therefore model job sizes
as being generated i.i.d. from a distribution that is heavy-tailed, but has an upper
bound—a very high one. We refer to this distribution as aBounded Pareto.It is
characterized by three parameters:α, the exponent of the power law;k, the shortest
possible job; andp, the largest possible job. The probability density function for
the Bounded ParetoB(k, p, α) is defined as:

f (x) = αkα

1− (k/p)α
x−α−1 k ≤ x ≤ p. (1)

In this article, we vary theα-parameter over the range 0 to 2 in order to ob-
serve the effect ofvariability of the distribution. To focus on the effect of chang-
ing variance, we keep the distributional mean fixed (at 3000) and the maximum
value fixed (atp = 1010), which correspond to typical values taken from Crovella
and Bestavros [1997]. In order to keep the mean constant, we adjustk slightly as
α changes (0< k ≤ 1500).

Note that the Bounded Pareto distribution has all its moments finite. Thus, it is
not a heavy-tailed distribution in the sense we have defined above. However, this

4 While the distribution of job processing requirements at the PSC does not seem to exactly fit a
Pareto distribution, these workloads do have a very strong heavy-tailed property and high variance.
Specifically, our measurements showed that half the load is made up by only the biggest 1.3% of all
jobs, and the squared coefficient of variation is 43.
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FIG. 4. Parameters of the Bounded Pareto Distribution (left); Second Moment ofB(k, p = 1010, α)
as a function ofα, whenE{X} = 3000 (right).

FIG. 5. Illustration of the flow of jobs in theTAGS algorithm.

distribution will still show very high variability ifk ¿ p. For example, Figure 4
(right) shows the second momentE{X2} of this distribution as a function ofα for
p = 1010, wherek is chosen to keepE{X} constant at 3000, (0< k ≤ 1500).
The figure shows that the second moment explodes exponentially asα declines.
Furthermore, the Bounded Pareto distribution also still exhibits the heavy-tailed
property and (to some extent) the decreasing failure rate property of the unbounded
Pareto distribution. We mention these properties because they are important in
choosing the best task assignment policy.

4. The TAGS Algorithm

This section describes theTAGS algorithm. Leth be the number of hosts in the
distributed server. Think of the hosts as being numbered: 1, 2, . . . , h. Thei th host
has a numbersi associated with it, wheres1 < s2 < · · · < sh.
TAGS works as shown in Figure 5:All incoming jobs are immediately dispatched

to Host 1. There they are serviced in FCFS order. If they complete before using
up s1 amount of CPU, they simply leave the system. However, if a job has used
s1 amount of CPU at Host 1 and still has not completed, then it is killed (remember,
jobs cannot be preempted). The job is then put at the end of the queue at Host 2,
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where it must be restarted from scratch.5 Each host services the jobs in its queue in
FCFS order. If a job at hosti uses upsi amount of CPU and still has not completed
it is killed and put at the end of the queue for Hosti + 1. In this way, theTAGS
algorithm “guesses the size” of each job, hence the name.

TheTAGS algorithm may sound counterintuitive for a few reasons: First of all,
there’s a sense that the higher-numbered hosts will be underutilized and the first
host overcrowded since all incoming jobs are sent to Host 1. An even more vital
concern is that theTAGS algorithmwastesa large amount of resources by killing
jobs and then restarting them from scratch.6 There is also the sense that the big jobs
are especially penalized since they are the ones being restarted.
TAGS comes in three flavors; these only differ in how thesi ’s are chosen. In

TAGS-opt-slowdown, the si ’s are chosen so as to optimize mean slowdown. In
TAGS-opt-waitingtime, thesi ’s are chosen so as to optimize mean waiting time.
As we’ll see,TAGS-opt-slowdown andTAGS-opt-waitingtime are not neces-
sarily fair. InTAGS-opt-fairness, thesi ’s are chosen so as to optimize fairness.
Specifically, the jobs whose final destination is Hosti experience the same expected
slowdown underTAGS-opt-fairness as do the jobs whose final destination is
Host j , for all i and j .

To useTAGS, one needs to compute the appropriatesi cutoffs. Thesi ’s are a func-
tion of the distribution of job sizes (which in our case is defined by the parametersα,
k, andp) and the average outside arrival rateλ. These workload parameters can be
determined by observing the system for a period of time. To determine thesi ’s, given
these workload parameters, we useMathematicaTM as described in the Appendix to
solve for the optimal values of thesi ’s, which minimize the performance formulas
for mean slowdown, mean response time, etc.
TAGS may seem reminiscent of multilevel feedback queuing, but these arenot

related. In multilevel feedback queuing, there is only a single host with manyvirtual
queues. The host is time-shared and jobs are preemptible. When a job uses some
amount of service time, it is transferred (not killed and restarted) to a lower priority
queue. Also, in multilevel feedback queuing, the jobs in that lower priority queue
areonlyallowed to run when the higher priority queues are empty.

5. Analytic Results for the Case of Two Hosts

This section contains the results of our analysis of theTAGS task assignment policy
and other policies. In order to clearly explain the effect of theTAGS algorithm, we
limit the discussion in this section to the case of two hosts. In this case, we refer to
the jobs whose final destination is Host 1 as theshort jobsand the jobs whose final
destination is Host 2 as thebig jobs. Until Section 5.3, we always assume that the
system load is 0.5 and there are two hosts. In Section 5.3, we consider other system
loads, but still stick to the case of two hosts. Finally, in Section 6, we consider
distributed servers with>2 hosts.

We evaluate theRandom,Least-Work-Remaining, andTAGSpolicies via analy-
sis, all as a function ofα, whereα is the variance parameter for the Bounded Pareto

5 Note, although the job is restarted, it is still the same job, of course. We must therefore be careful
in our analysisnot to assign it a new service requirement.
6 My dad, Micha Harchol, would add that there’s also the psychological concern of what the angry
user might do when he’s told his job has been killed to help the general good.
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FIG. 6. Mean slowdown for distributed server with two hosts and system load .5 under (a)TAGS-
opt-slowdown and (b)TAGS-opt-fairness as compared with theLeast-Work-Remaining and
Random task assignment policies.

job size distribution, andα ranges between 0 and 2. Recall from Section 3 that
the lowerα is, the higher the variance in the job-size distribution. Recall also that
empirical measurements of job-size distributions often showα ≈ 1.Round-Robin
(see Section 1) will not be evaluated directly because we showed in a previous
paper [Harchol-Balter et al. 1999] thatRandom andRound-Robin have almost
identical performance.

Figure 6(a) shows mean slowdown underTAGS-opt-slowdown as com-
pared with the other policies. The y-axis is shown on a log scale. Observe
that for very highα, the performance of all the task assignment policies is
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comparable and very good, however asα decreases, the performance of all the
policies degrades. TheLeast-Work-Remaining policy consistently outper-
forms Random by about an order of magnitude; however,TAGS-opt-slowdown
offers several orders of magnitude further improvement: Atα = 1.5, TAGS-opt-
slowdown outperformsLeast-Work-Remaining by 2 orders of magnitude;
at α≈ 1, TAGS-opt-slowdown outperformsLeast-Work-Remaining by over
4 orders of magnitude; atα = .4, TAGS-opt-slowdown outperformsLeast-
Work-Remaining by over 9 orders of magnitude.

Figure 6(b) shows mean slowdown ofTAGS-opt-fairness, as compared with
the other policies. Surprisingly, the performance ofTAGS-opt-fairness is not far
from that ofTAGS-opt-slowdownand yetTAGS-opt-fairnesshas the additional
benefit of fairness.

Figure 7 is identical to Figure 6 except that in this case the performance metric is
mean waiting time, rather than mean slowdown. Again theTAGS algorithm shows
several orders of magnitude improvement over the other task assignment policies.

Why does theTAGS algorithm work so well? Intuitively, it seems that
Least-Work-Remaining should be the best performer, sinceLeast-Work-
Remaining sends each job to where it will individually experience the lowest wait-
ing time. The reason whyTAGSworks so well is two-fold: The first reason isvariance
reduction(Section 5.1) and the second reason isload unbalancing(Section 5.2).

5.1. VARIANCE REDUCTION. Variance reduction refers to reducing the variance
of job sizes that share the same queue. Intuitively, variance reduction improves
performance because it reduces the chance of a short job getting stuck behind a
long job in the same queue. This is stated more formally in Theorem 1 below, which
is derived from the Pollaczek–Khinchin formula.

THEOREM 1. Given an M/G/1 FCFS queue, where the arrival process has
rateλ, X denotes the service time distribution, andρ denotes the utilization(ρ =
λE{X}). Let W be a job’s waiting time in queue, S be its slowdown, and Q be the
queue length on its arrival. Then,

E{W} = λE{X2}
2(1− ρ)

(Pollaczek–Khinchin formula
[Pollaczek 1930; Khinchi 1932])

E{S} = E
{

W

X

}
= E{W} · E{X−1}

E{Q} = λE{W}.
PROOF. The slowdown formula follows from the fact thatW andX are inde-

pendent for a FCFS queue, and the queue size follows from Little’s formula.

The above formulas apply to just a single FCFS queue,not a distributed server.
Observe that every metric for the simple FCFS queue is dependent onE{X2}, the
second moment of the service time. Recall that if the workload is heavy-tailed, the
second moment of the service time explodes (Figure 4). We now discuss the effect
of high variability in job sizes on adistributed serverwith h hosts under the various
task assignment policies.

5.1.1. Random Task Assignment.This policy simply performs Bernoulli split-
ting on the input stream, with the result that each host becomes an independent
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FIG. 7. Mean waiting time for distributed server with two hosts and system load .5 under (a)TAGS-
opt-slowdown and (b)TAGS-opt-fairness as compared with theLeast-Work-Remaining and
Random task assignment policies.

M/B(k, p, α)/1 queue. The load at thei th host,ρi , is equal to the system load,
ρ. The arrival rate at thei th host is 1/h-fraction of the total outside arrival rate.
Theorem 1 applies directly, and all performance metrics are proportional to the
second moment ofB(k, p, α). Performance is generally poor because the second
moment of theB(k, p, α) is high.

5.1.2. Round Robin. This policy splits the incoming stream so each host sees
an Eh/B(k, p, α)/1 queue, with utilizationρi = ρ, whereEhdenotes anh-stage
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Erlang distribution. This system has performance close to theRandom policy since
it still sees high variability in service times, which dominates performance.

5.1.3. Least-Work-Remaining.This policy is equivalent toCentral-Queue,
which is simply an M/G/h queue, for which there exist known approximations,
[Sozaki and Ross 1978; Wolff 1989]:

E{QM/G/h} = E{QM/G/h} · E{X
2}

E{X}2 ,

where X denotes the service time distribution, andQ denotes queue length.
What’s important to observe here is that the mean queue length, and therefore
the mean waiting time and mean slowdown, are all proportional to the sec-
ond moment of the service time distribution, as was the case for theRandom
and Round-Robin policies. In fact, the performance metrics are all propor-
tional to the squared coefficient of variation (C2 = E{X2}/E{X}2) of the service
time distribution.

5.1.4. TAGS. TheTAGS policy is the only policy thatreducesthe variance of
job sizes at the individual hosts. Consider the jobs that queue at Hosti : First, there
are those jobs are destined for Hosti . Their job-size distribution isB(si−1, si , α)
because the original job-size distribution is a Bounded Pareto. Then there are the
jobs that are destined for hosts numbered greater thani . The service time of these
jobs at Hosti is capped atsi . Thus, the second moment of the job-size distribution
at Hosti is lower than the second moment of the originalB(k, p, α) distribution
(for all hosts except the highest numbered host, it turns out). The full analysis of
theTAGS policy is presented in the Appendix. A sketch is given here: The initial
difficulty is figuring out what to condition on, since jobs may visit multiple hosts.
The solution is to partition thejobs based on theirfinal host destination. Thus,
the mean response time of the system is a linear combination of the mean response
time of jobs whose final destination is Hosti , where i = 1, . . . , h. The mean
response time for a job whose final destination is Hosti is the sum of the job’s
response times at Hosts 1 throughi . The mean response timeat Hosti is computed
via the M/G/1 formula. These computations are relatively straightforward except
for one point that we have to approximate and that we explain now: For analytic
convenience, we need to be able to assume that the jobs arriving at each host form a
Poisson Process. This is, of course, true for Host 1. However, the arrivals at Hosti
are those departures from Hosti − 1 that exceed sizesi−1. They form alessbursty
process than a Poisson Process since they are spaced apart by at leastsi−1. Since
we make the assumption that the arrival process into Hosti is a Poisson Process
(that is more bursty than the actual process), our analysis if anything produces an
upper bound on the response time and slowdown ofTAGS. Finally, once the final
expression for mean response time is derived,MathematicaTM is used to derive
those cutoffs that minimize the expression.

5.2. LOAD UNBALANCING. The second reason whyTAGS performs so well has
to do withload unbalancing. Observe that all the other task assignment policies we
described specifically try tobalanceload at the hosts.Random andRound-Robin
balance the expected load at the hosts, whileLeast-Work-Remaining goes even
further in trying to balance the instantaneous load at the hosts. InTAGS, we do
the opposite.
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FIG. 8. Load at Host 1 as compared with Host 2 in a distributed server with two hosts and system
load .5 under (a)TAGS-opt-slowdown, (b)TAGS-opt-waitingtime, and (c)TAGS-opt-fairness.
Observe that for very lowα, Host 1 is run at load close to zero, and Host 2 is run at load close to 1,
whereas for highα, Host 1 is somewhat overloaded.

Figure 8 shows the load at Host 1 and at Host 2 forTAGS-opt-slowdown,
TAGS-opt-waitingtime, andTAGS-opt-fairness as a function ofα. Observe
that all three flavors ofTAGS (purposely) severely underload Host 1 whenα is low
but for higherα actually overload Host 1 somewhat. In the middle range,α ≈ 1,
the load is balanced in the two hosts.

We first explain why load unbalancing is desirable when optimizing overall mean
slowdown of the system. We later explain what happens when optimizing fairness.
To understand why it is desirable to operate at unbalanced loads, we need to go back
to the heavy-tailed property. The heavy-tailed property says that when a distribution
is very heavy-tailed (very lowα), only a miniscule fraction of all jobs—the very
longest ones—are needed to make up more than half the total load. As an example,
for the caseα = .2, it turns out that the longest 10−6 fraction of jobs alone are
needed to make up half the load. In fact not many more jobs—just the longest
10−4 fraction of all jobs—are needed to make up.99999 fraction of the load. This
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suggests a load game that can be played: We choose the cutoff point (s1) such that
mostjobs ((1−10−4) fraction) have Host 1 as their final destination, and only a very
fewjobs (the longest 10−4 fraction of all jobs) have Host 2 as their final destination.
Because of the heavy-tailed property, the load at Host 2 will be extremely high
(.99999) while the load at Host 1 will be very low (.00001). Sincemostjobs get to
run at such reduced load, the overall mean slowdown is very low.

When the distribution is a little less heavy-tailed, for example,α ≈ 1, we can’t
play this load unbalancing game as well. Again, we would like to severely underload
Host 1 and overload Host 2. Before, we were able to do this by sending only a
very small fraction of all jobs (<10−4 fraction) to Host 2. However, now that the
distribution is not as heavy-tailed, a larger fraction of jobs must have Host 2 as its
final destination to create high load at Host 2. But this, in turn, means that jobs
with destination Host 2 count more in determining the overall mean slowdown
of the system, which is bad since jobs with destination Host 2 experience larger
slowdowns. Thus, we can only afford to go so far in overloading Host 2 before it
turns against us.

When we get toα > 1, it turns out that it actually pays tooverloadHost 1 a little.
This seems counterintuitive, since Host 1 counts more in determining the overall
mean slowdown of the system because most jobs have destination Host 1. However,
the point is that now it is impossible to create the wonderful state where almost all
jobs are on Host 1 and yet Host 1 is underloaded. The tail is just not heavy enough.
No matter how we choose the cutoff, a significant portion of the jobs will have
Host 2 as their destination. Thus, Host 2 will inevitably figure into the overall mean
slowdown and so we need to keep the performance on Host 2 in check. To do this,
it turns out we need to slightly underload Host 2, to make up for the fact that the
job-size variability is so much greater on Host 2 than on Host 1.

The above has been an explanation for why load unbalancing is important with
respect to optimizing the system mean slowdown. However, it is not at all clear
why load unbalancing also optimizes fairness, as shown in Figure 8(c). Under
TAGS-opt-fairness, the mean slowdown experienced by the short jobs isequal
to the mean slowdown experienced by the long jobs. However, it seems in fact that
we are treating the long jobs unfairly on three counts:

(1) The short jobs run on Host 1 which has very low load (for lowα).
(2) The short jobs run on Host 1 which has very lowE{X2}.
(3) The short jobs don’t have to be restarted from scratch and wait on a second

line.

So how can it possibly be fair to help the short jobs so much? The answer is
simply that the short jobs are short. Thus, they need low waiting times to keep
their slowdown low. Long jobs, on the other hand, can afford a lot more waiting
time. They are better able to amortize the punishment over their long lifetimes. It
is important to mention, though, that this would not be the case for all distribu-
tions. It is because our job-size distribution for lowα is so heavy-tailed that the
long jobs are trulyelephants(way longer than the shorts) and thus can afford to
suffer more.

5.3. DIFFERENT LOADS. Until now, we have studied only the model of a
distributed server with two hosts and system load 0.5. In this section we con-
sider the effect of system load on the performance ofTAGS. We continue to
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assume a two-host model. Figure 9 shows the performance ofTAGS-opt-slowdown
on a distributed server run at system load (a) 0.3, (b) 0.5, and (c) 0.7.
In all three figures,TAGS-opt-slowdown improves upon the performance of
Least-Work-Remaining andRandom under the full range ofα; however, the im-
provement ofTAGS-opt-slowdown is much better when the system is more lightly
loaded. In fact, all the policies improve as the system load is dropped; however, the
improvement inTAGS is the most dramatic. In the case where the system load is
0.3,TAGS-opt-slowdown improves uponLeast-Work-Remaining by over 4 or-
ders of magnitude atα= 1, by 7 orders of magnitude whenα= .6 and by almost
20 orders of magnitude whenα= .2! When the system load is 0.7, on the other
hand, TAGS-opt-slowdown behaves comparably toLeast-Work-Remaining
for most α and only improves uponLeast-Work-Remaining in the narrower
range of .6<α<1.5. Notice however that, atα ≈ 1, the improvement of
TAGS-opt-slowdown is still about 4 orders of magnitude.

Why is the performance ofTAGS so correlated with load? There are two reasons,
both of which are explained by Figure 10, which shows the loads at the two hosts
underTAGS-opt-slowdown in the case where the system load is (a) 0.3, (b) 0.5,
and (c) 0.7.

The first reason for the ineffectiveness ofTAGS under high loads is that the
higher the load, the less ableTAGS is to play the load-unbalancing game described
in Section 5.2. For lowerα, TAGS reaps much of its benefit at the lowerα by moving
all the load onto Host 2. When the system load is only 0.5, TAGS is easily able to
pile all the load on Host 2 without exceeding load 1 at Host 2. However, when the
system load is 0.7, the restriction that the load at Host 2 must not exceed 1 implies
that Host 1 cannot be as underloaded asTAGSwould like. This is seen by comparing
Figure 10(b) and Figure 10(c) where in (c) the load on Host 1 is much higher for
the lowerα than it is in (b).

The second reason for the ineffectiveness ofTAGS under high loads is due to
what we callexcess. Excess is the extra work created inTAGS by restarting jobs
from scratch. In the two-host case, the excess is simply equal toλ · p2 · s1, where
λ is the outside arrival rate,p2 is the fraction of jobs whose final destination is
Host 2, ands1 is the cutoff differentiating short jobs from long jobs. An equivalent
definition of excess is the difference between the actual sum of the loads on the
hosts andh times the system load, whereh is the number of hosts. The dotted line
in Figures 10(a)–(c) shows the sum of the loads on the hosts.

Observe that for loads under 0.5, excess is not an issue. The reason is that for low
α, where we need to do the severe load unbalancing, excess is basically nonexistent
for loads 0.5 and under, sincep2 is so small (due to the heavy-tailed property) and
sinces1 could be forced down. For highα, excess is present. However, all the task
assignment policies already do well in the highα region because of the low job size
variability, so the excess is not much of a handicap.

When system load exceeds 0.7, however, excess is much more of a problem, as
is evidenced by the dotted line in Figure 10(c). One reason that the excess is worse
is simply that overall excess increases with load because excess is proportional
to λ, which is in turn proportional to load. The other reason that the excess is
worse at higher loads has to do withs1. In the lowα range, althoughp2 is still
low (due to the heavy-tailed property),s1 cannot be forced low because the load at
Host 2 is capped at 1. Thus, the excess for lowα is very high. In the highα range,
excess again is high becausep2 is high.
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FIG. 9. Mean slowdown underTAGS-opt-slowdown in a distributed server with two hosts with sys-
tem load (a) 0.3, (b) 0.5, and (c) 0.7. In each figure, the mean slowdown underTAGS-opt-slowdown
is compared with the performance ofRandom andLeast-Work-Remaining. Observe that in all the
figuresTAGS outperforms the other policies under allα. However,TAGS is most effective at lower
system loads.
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FIG. 10. Load at Host 1 and Host 2 underTAGS-opt-slowdown shown for a distributed server
with two hosts and system load (a) 0.3 (b) 0.5 (c) 0.7. The dotted line shows the sum of the loads at
the two hosts. If there were no excess, the dotted line would be at (a) 0.6 (b) 1.0 and (c) 1.4 in each of
the graphs respectively. In figures (a) and (b), we see excess only at the higherα range. In figure (c),
we see excess in both the lowα and highα range, but not aroundα ≈ 1.

Fortunately, observe that for higher loads excess is at its lowest point atα ≈ 1.
In fact, it is barely existent in this region. Observe also that theα ≈ 1 region
is the region where balancing load is the optimal thing to do (with respect to
minimizing mean slowdown), regardless of the system load. This “sweet spot” is
fortunate becauseα ≈ 1 is characteristic of many empirically measured computer
workloads, see Section 3.

6. Analytic Results for Case of More than Two Hosts

Until now, we have only considered distributed servers with two hosts. For two
hosts, we saw that the performance ofTAGS-opt-slowdown was amazingly good



Task Assignment with Unknown Duration 279

FIG. 11. Illustration of the claim that anh host system (h > 2) with system loadρ can always be
configured to produce performance at least as good as a two-host system with system loadρ (although
theh-host system has much higher arrival rate).

if the system load was 0.5 or less, but not nearly as good for system load>0.5. In
this section, we consider the case of more than two hosts.7

One claim that can be made straight off is that anh host system (h > 2) with
system loadρ can always be configured to produce performance that isat least
as goodas the best performance of a two-host system with system loadρ. To see
why, observe that we can use theh host system (assumingh is even) to simulate a
two-host system as illustrated in Figure 11: Rename Hosts 1 and 2 as Subsystem 1.
Rename Hosts 3 and 4 as Subsystem 2. Rename Hosts 5 and 6 as Subsystem 3, etc.
Now split the traffic entering theh host system so that 2/h fraction of the jobs go to
each of theh/2 subsystems. Now apply the best known task assignment policy to
each subsystem independently—in our case we chooseTAGS. Each subsystem will
behave like a two-host system with loadρ runningTAGS. Since each subsystem will
have identical performance, the performance of the wholeh host system will be
equal to the performance of any one subsystem. (Observe that the above argument
works for any task assignment policy).

However, the performance of a distributed server withh > 2 hosts and system
loadρ is often much superior to that of a distributed server with two hosts and system
loadρ. Figure 12 shows the mean slowdown underTAGS-opt-slowdown for the
case of a four-host distributed server with system load 0.3. Comparing these results
to those for the two-host system with system load 0.3 (Figure 9(a)), we see that:

(1) The performance ofRandom stayed the same, as it should.
(2) The performance ofLeast-Work-Remaining improved by a couple orders

of magnitude in the higherα region, but less in the lowerα region. The

7 The phrase “adding more hosts” can be ambiguous because it is not clear whether the arrival rate is
increased as well. For example, given a system with two hosts and system load 0.7, we could increase
the number of hosts to four hostswithoutchanging the arrival rate, and the system load would drop to
0.35. On the other hand, we could increase the number of hosts to four hosts and increase the arrival
rate appropriately (double it) so as to maintain a system load of 0.7. In our discussions below, we
attempt to be clear as to which view we have in mind.
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FIG. 12. Mean slowdown underTAGS-opt-slowdown compared with other policies in the case of
a distributed server with four hosts and system load 0.3. The cutoffs forTAGS-opt-slowdown were
optimized by hand. In many cases, it is possible to improve upon the results shown here by adjusting
the cutoffs further, so the slight bend in the graph may not be meaningful. Observe that the mean
slowdown ofTAGS almost never exceeds 6.

Least-Work-Remaining policy is helped by increasing the number of hosts,
although the system load stayed the same, because having more hosts increases
the chances of one of them being free.

(3) The performance ofTAGS-opt-slowdown improved a lot. So much so, that the
mean slowdown underTAGS-opt-slowdown is neverover 6 and often under
1. At α ≈ 1, TAGS-opt-slowdown improves uponLeast-Work-Remaining
by 4–5 orders of magnitude. Atα = .6, the improvement increases to
8 or 9 orders of magnitude. Atα = .2, TAGS-opt-slowdown improves upon
Least-Work-Remaining by over 25 orders of magnitude.

The enhanced performance ofTAGS on more hosts may come from the fact
that more hosts allow for greater flexibility in choosing the cutoffs. However, it
is hard to say for sure because it is difficult to compute results for the case of
more than two hosts. The cutoffs in the case of two hosts were all optimized
by MathematicaTM, while in the case of four hosts, it was necessary to perform
the optimizations by hand. For the case of system load 0.7 with four hosts, we
ran into the same type of problems as we did for the two-host case with system
load 0.7.

6.1. THE SERVEREXPANSION PERFORMANCEMETRIC. There is one thing that
seems very artificial about our current comparison of task assignment policies.
No one would ever run a system with a mean of slowdown 105. In practice, if
a system was operating with mean slowdown of 105, the number of hosts would
be increased, without increasing the arrival rate, thus dropping the system load,
until the system’s performance improved to a reasonable mean slowdown, say
3. Consider the following example: Suppose we have a two-host system running
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at system load .7 and with variability parameterα = .6. For this system, the
mean slowdown underTAGS-opt-slowdown is 109, and no other policy that we
know of does better. Suppose, however, we desire a system with mean slowdown
under 3. So we double the number of hosts (without increasing the outside ar-
rival rate). At four hosts, with system load 0.35, TAGS-opt-slowdown now has
mean slowdown of around 1, whereasLeast-Work-Remaining’s slowdown has
improved to 108. It turns out we would have to increase number of hosts to 13
for the performance ofLeast-Work-Remaining to improve to the point of mean
slowdown under 3. And forRandom to reach that level it would require an additional
109 hosts.

The above example suggests a new practical performance metric for distributed
servers, which we call theserver expansion metric. The server expansion metric asks
how many additional hosts must be added to the existing server (without increasing
outside arrival rate) to bring mean slowdown down to a reasonable level (where we
will arbitrarily define “reasonable” as slowdown of 3 or less). Figure 13 compares
the performance of our policies according to the server expansion metric, given that
we start with a two-host system with system load of 0.7. ForTAGS-opt-slowdown,
the server expansion is only 3 forα = .2 and no more than 2 for all the otherα. For
Least-Work-Remaining, on the other hand, the server expansion ranges from
1 to 27, asα decreases. StillLeast-Work-Remaining is not so bad because at
least its performance improves somewhat quickly as hosts are added and load is
decreased, the reason being that both these effects increase the probability of a job
finding an idle host. By contrastRandom, shown in Figure 13(b), is exponentially
worse than the others, requiring as many as 105 additional hosts whenα ≈ 1.
AlthoughRandom does benefit from increasing the number of hosts, the effect isn’t
nearly as strong as it is forTAGS andLeast-Work-Remaining.

7. The Effect of the Range of Task Sizes

The purpose of this section is to investigate what happens when therangeof job
sizes is smaller than we have heretofore assumed, resulting in a smaller coefficient
of variation in the job-size distribution.

Until now, we have always assumed that the job sizes are distributed according
to a Bounded Pareto distribution with upper boundp = 1010 and fixed mean 3000.
This means, for example, that whenα ≈ 1, we need to set the lower bound on job
sizes tok = 167. However, this implies that the range of job sizes spans 8 orders
of magnitude.

It is not clear that all applications have job sizes ranging 8 orders in magnitude. In
this section, we rederive the performance of all the task assignment policies when
the upper boundp is set top = 107, while still holding the mean of the job-size
distribution at 3000. This means, for example, that whenα ≈ 1 (as agrees with
empirical data), we need to set the lower bound on job sizes tok = 287, which
implies the range of job sizes spans just 5 orders of magnitude. Figure 14 shows the
second moment of the Bounded Pareto job size distribution as a function ofα when
p = 107. Comparing this figure to Figure 4, we see that the job-size variability is
far lower whenp = 107.

Lower variance in the job-size distribution suggests that the improvement ofTAGS
over the other assignment policies will not be as dramatic as in the higher variability
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FIG. 13. Server expansion requirement for each of the task assignment policies, given that we
start with a two-host system with system load of 0.7. (a) Shows justLeast-Work-Remaining
and TAGS-opt-slowdown on a non-log scale (b) ShowsLeast-Work-Remaining, TAGS-opt-
slowdown, andRandom on a log scale.

setting (whenp = 1010). This is, in fact, the case. What is interesting, however, is
that, even in this lower variability setting, the improvement ofTAGS over the other
policies is still impressive, as shown in Figure 15. Figure 15 shows the mean slow-
down ofTAGS-opt-slowdown as compared withRandom andLeast-Work-Left
for the case of two hosts with system load 0.5. Observe that forα ≈ 1, TAGS
improves upon the other policies by over 2 orders of magnitude. Asα drops, the
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FIG. 14. Second moment ofB(k, p, α) distribution, where now the upper bound,p, is set atp = 107,
rather than 1010. The mean is held fixed at 3000 asα is varied. Observe that the coefficient of variation
now ranges from 2 (whenα = 2) to 33 (whenα = .2).

FIG. 15. Mean slowdown underTAGS-opt-slowdown in a distributed server with two hosts with
system load 0.5, as compared withRandom andLeast-Work-Remaining. In this set of results, the
job size distribution isB(k, p, α), wherep = 107.

improvement increases. This figure should be contrasted with Figure 6(a), which
shows the same scenario wherep = 1010.

8. Conclusion

This article is interesting not only because it proposes a powerful new task assign-
ment policy, but more so because it challenges some natural intuitions which we
have come to adopt over time as common knowledge.
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Traditionally, the area of task assignment, load balancing and load sharing has
consisted of heuristics that seek to balance the load among the multiple hosts.
TAGS, on the other hand, specifically seeks to unbalance the load, and sometimes
severely unbalance the load. Traditionally, the idea of killing a job and restart-
ing it from scratch on a different machine is viewed with skepticism, but possi-
bly tolerable if the new host is idle.TAGS, on the other hand, kills jobs and then
restarts them from scratch at a target host which is typically operating at extremely
high load, much higher load than the original source host. Furthermore,TAGS pro-
poses restarting the same job multiple times. Traditionally optimal performance
and fairness are viewed as conflicting goals. InTAGS, fairness and optimality are
surprisingly close.

It is interesting to consider further implications of these results, outside the scope
of task assignment. Consider, for example, the question of scheduling CPU-bound
jobs on a single CPU, where jobs are not preemptible and no a priori knowledge
is given about the jobs. At first, it seems that FCFS scheduling is the only op-
tion. However, in the face of high job-size variability, FCFS may not be wise.
This article suggests that killing and restarting jobs may be worth investigat-
ing as an alternative, if the load on the CPU is low enough to tolerate the extra
work created.

This work may also have implications in the area of network flow routing. A very
interesting recent paper by Shaikh et al. [1999] takes a first step in this direction. The
article discusses routing of IP flows (which also have heavy-tailed size distributions)
and recommends routing long flows differently from short flows.

Appendix

This section provides the analysis of theTAGS policy. Throughout this discussion
it will be necessary to refer to Table II to understand the notation.

We start with some properties of the original distribution of job sizesB(k, p, α):

f (x) = αkα

1− (k/p)α
x−α−1 k ≤ x ≤ p

E{X j } =
∫ p

k
f (x) · x j dx=


αkα (k j−α−pj−α)
(α− j )(1−(k/p)α) if α 6= j

k
1−(k/p) · (ln p− ln k) if α = j = 1

λ = 1

E{X} · h · ρ.

Let pi denote the fraction of jobs whose final destination is Hosti and pvisit
i

denote the fraction of jobs which ever visit Hosti .

pi =
∫ si

si−1

f (x)dx= kα

1− (k/p)α
(
s−αi−1− s−αi

)
pvisit

i =
h∑

j=i

pj
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TABLE II. NOTATION FOR ANALYSIS OFTAGS

h Number of hosts
B(k, p, α) Job size distribution
p Upper bound on job size distribution
k Lower bound on job size distribution
f (x) Probability density function forB(k, p, α).
α Heavy-tailed parameter
s0, s1, . . . , sh Job size cutoffs
si Upper bound on job size seen by Hosti
λ Outside arrival rate into system
ρ System load
ρvisit

i Load at Hosti
pi Fraction of jobs whose final destination is Hosti ,

i.e., whose size is betweensi−1 andsi .
pvisit

i Fraction of jobs which spend time at Hosti
λvisit

i Arrival rate into Hosti
E{X} Mean job size underB(k, p, α) distribution
E{X j } j th moment of job size distributionB(k, p, α)
E{Xi } Expected size of jobs whose final destination is Hosti .
E{Xvisit

i } Expected size of jobs which spend time at Hosti
E{X2

i } Second moment of size of jobs whose final destination is Hosti .
E{X j

i } jth moment of size of jobs whose final destination is Hosti .

E{X2(visit)
i } Second moment of size of jobs which spend time at Hosti

E{X j (visit)
i } jth moment of size of jobs which spend time at Hosti

E{1/Xi } Expected 1/size of jobs whose final destination is Hosti
E{Wvisit

i } Expected waiting time at Hosti
E{Wi } Total expected waiting time for jobs with final destination Hosti
E{Si } Expected slowdown for jobs with final destination Hosti
E{W} Expected waiting time for jobs underTAGS
E{S} Expected slowdown for jobs underTAGS
Excess Total excess work being done

Now consider those jobs whosefinal destinationis Host i . Observe that since
the original distribution is Bounded ParetoB(k, p, α), then the distribution of jobs
whose final destination is Hosti is also a Bounded ParetoB(si−1, si , α). This makes
it easy to computeE{X j

i }, the j th moment of the distribution of jobs whose final
destination is Hosti :

E
{
X j

i

} = ∫ si

si−1

x j f (x)

pi
dx=



αsαi−1

(
sj−α
i−1 −sj−α

i

)
(α− j ) (1−(si−1/si )α) if α 6= j

si−1si

si−si−1
(ln si − ln si−1) if α = j = 1

αsαi−1

(1−(si−1/si )α) · (ln si − ln si−1) if α = j = 2.

Now consider all jobs whichvisit Host i . These include thepi fraction of all
jobs which have Hosti as their final destination. However these also include the
pvisit

i − pi fraction of all jobs which have Hostj as their final destination, where
j > i . Those jobs which have Hostj , j > i , as their final destination will only



286 MOR HARCHOL-BALTER

have a service requirement ofsi at Hosti . Thus, it follows that:

E
{
Xvisit

i

} = pi

pvisit
i

· E{Xi } + pvisit
i − pi

pvisit
i

· si

E
{
X2(visit)

i

} = pi

pvisit
i

· E{X2
i

}+ pvisit
i − pi

pvisit
i

· s2
i

λvisit
i = λ · pvisit

i

ρvisit
i = λvisit

i · E
{
Xvisit

i

}
E
{
1/X j

i

} = E
{
X− j

i

}
There are two equivalent ways of defining excess. We show both below and check

them against each other in our computations.

true-sum-of-loads=
h∑

i=1

ρvisit
i

desired-sum-of-loads= h · ρ
Excessa = true-sum-of-loads− desired-sum-of-loads

Excessb =
h∑

i=2

λvisit
i · si−1

Excess= Excessa = Excessb

Computing mean waiting time and mean slowdown follows from Theorem 1,
except for one approximation, as explained earlier in the text: we will assume that
the arrival process into each host is a Poisson Process. Observe that in computing
mean slowdown, we have to be careful about which jobs we’re averaging over. The
calculation works out most easily if we condition on the final destination of the job,
as shown below.

E
{
Wvisit

i

} = λvisit
i · E

{
X2(visit)

i

}
/
(
2
(
1− ρvisit

i

))
E{Wi } =

i∑
j=1

E
{
Wvisit

j

}
E{W} =

h∑
i=1

E{Wi } · pi

E{Si } = E{Wi } · E{1/Xi }

E{S} =
h∑

i=1

E{Si } · pi

All the formulas above assume knowledge of the cutoff pointss0, s1, . . . , sh.
To determine these cutoff points, we feed all of the above formulas into
MathematicaTM, leaving thesi ’s as undetermined variables. We then solve for
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the optimal setting of thesi ’s which minimizes the mean slowdown, mean waiting
time, or fairness, as desired, subject to conditions that the load at each host stays
below 1.
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