CS 622
Distributed Networks
Multi-speed Access Network Design

Dr. Xiaobo Zhou
Department of Computer Science

Review: One-speed One-center CMST Problem

° CMST problem: Given a central node N_0 and a set of other nodes ($N_1, ..., N_n$), a set of weights ($w_1, ..., w_n$) for each node, the capacity of a link, W, and a cost matrix $Cost(i, j)$, find a set of trees $T_1, ..., T_k$ such that each N_i belongs to exactly one T_j and each T_j contains N_0, and

$$\sum_{i \in T_j, i > 0} w_i < W$$

$$\min \sum_{\text{Trees}} \sum_{i \in \text{Links}} Cost(\text{end1}_i, \text{end2}_i)$$

° Esau-Williams algorithm vs. Sharma algorithm
Review: Multi-speed Local Access Algorithm (MSLA)

- Assign each node the smallest link \(l \) possible to connect it to the center. For each node \(n \), compute \(\text{spare capacity}(n) = W_l - w_n \), and set \(\text{pred}(n) = 0 \) (center).
 - In Esau-Williams’ algorithm, spare capacity is fixed as \(W - 1 \).

- Create trade-off values (in heap structure) for \(n \), similar to Esau-Williams. The trade-offs represent the saving from linking site \(n \) to site \(i \) rather than directly linking it to the center.

Difference to Esau-Williams: Allow upgrading links to carry additional traffic (if no spare capacity for traffic aggregation)

\[
\text{Tradeoff}(n,i) = c(n,i, l) + \text{Upgrade}(i,w_n) - c(n,0,l)
\]

\(\text{Upgrade}(i,w_n) \) is the cost of adding \(w_n \) units to the links that connect \(i \) and \(0 \) (center) by following back the predecessors.

- Add the edges as long as the tradeoffs are less than or equal to 0. Terminate when the tree is built.

Multiple-speed Links in Access Networks

- It is more natural that an access network is constructed by the use of various links which have different speed.

- In general, the cost of links increases roughly as the square root of capacity.

<table>
<thead>
<tr>
<th>Link type</th>
<th>Fixed cost</th>
<th>DIST_Cost1</th>
<th>DIST_Cost2</th>
<th>DIST1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6 Kbps</td>
<td>$200</td>
<td>$2.00</td>
<td>$1.40</td>
<td>300</td>
</tr>
<tr>
<td>56 kbps</td>
<td>$500</td>
<td>$5.00</td>
<td>$3.00</td>
<td>250</td>
</tr>
<tr>
<td>128 kbps</td>
<td>$750</td>
<td>$8.00</td>
<td>$4.40</td>
<td>350</td>
</tr>
</tbody>
</table>

Three typical link types used in local-access design.

- **Problem:** we need an efficient algorithm that builds a tree with links of different capacity
 - Intuitively, the tree should have small-capacity links at the ends and become “fatter” as moving toward the center.
Predecessor Function in Trees

Definition 6.1
A tree T rooted at a node $Root$ can be represented uniquely by a predecessor function $\text{pred} : V \rightarrow V$ on the set of vertices. The predecessor function moves one step closer to the $Root$.

$\text{pred}(\text{Root}) = \text{Root}; \text{pred}(N) \neq N; \text{pred}^n(N) = \text{Root}, n > 0$

![Diagram of a tree with nodes and predecessor function values]

Ancestor Function in Trees

Definition 6.2
Given a tree T and associated predecessor function, the ancestors of N are all the nodes N' such that $\text{pred}^n(N') = N$ for some $n > 0$

![Diagram of a tree with ancestors highlighted]

- Ancestors of N_0 are N_1, N_2, \ldots, N_8
- Ancestors of N_1 are N_3, N_4 and N_6
- Ancestors of N_5 are N_7 and N_8

In a capacitated MST, the weight of all the nodes of branch (all ancestors of a son node of the Center) is limited by a fixed quantity W
Multi-speed One-center CMST Problem

- Given the following
 - A set of nodes N0 (center), N1, N2, ..., Nn
 - A set of weights (w1, w2, ..., wn) for each node
 - A set of link types L1, L2, ..., Lm with capacities W1, W2, ..., Wm
 - A cost matrix C(i, j, k) giving the cost of a link of Lk b.w. Ni and Nj

- Find the tree rooted at N0, such that

\[\sum_{N \cup \text{Ancestors}(N)} w(i) < W_{\text{Link}(N, \text{pred}(N))} \]

and

\[\sum_{l \in \text{Links}} c(\text{end1}_l, \text{end2}_l, \text{type}_l) \] is minimum.

- Here \(\text{pred}(N) \) is a predecessor function that leads towards the root
- Ancestor of \(N \) are nodes, \(N' \), such that \(\text{pred}(n')(N) = N \) for some \(n > 0 \)
- If \(m = 1 \), the problem is reduced to CMST

Multi-speed Local Access Algorithm (MSLA)

- Assign each node the smallest link \(l \) possible to connect it to the center. For each node \(n \), compute \(\text{spare} _\text{capacity}(n) = W_l - w_n \), and set \(\text{pred}(n) = 0 \) (center)
 - In Esau-Williams’ algorithm, spare capacity is fixed as \(W - 1 \).

- Create trade-off values (in heap structure) for \(n \), similar to Esau-Williams. The trade-offs represent the saving from linking site \(n \) to site \(i \) rather than directly linking it to the center.

Difference to Esau-Williams: Allow upgrading links to carry additional traffic (if no spare capacity for traffic aggregation)

\[\text{Tradeoff}(n, i, l) = c(n, i, l) + \text{Upgrade}(i, w_n) - c(n, 0, l) \]

\(\text{Upgrade}(i, w_n) \) is the cost of adding \(w_n \) units to the links that connect \(i \) and 0 (center) by following back the predecessors.

- Add the edges as long as the tradeoffs are less than or equal to 0. Terminate when the tree is built.
An MSLA Example

- Three types of links (9.6 Kbps, 56 Kbps, 128 Kbps), 50% utilization
 - Link weights: $W_0 = 4800$, $W_1 = 28000$, $W_2 = 64000$

- Initial state
 - $\text{spare}_{\text{capacity}}(1) = 28000 - 20000 = 8000$ (link type 1, 56 Kbps)
 - $\text{spare}_{\text{capacity}}(2) = 4800 - 2400 = 2400$ (type 0, 9.6 Kbps)
 - $\text{spare}_{\text{capacity}}(3) = 28000 - 9600 = 18400$ (link type 1, 56 Kbps)
 - $\text{spare}_{\text{capacity}}(4) = 4800 - 4800 = 0$ (link type 0, 9.6 Kbps)

- Cost matrix $c(i, j, k)$ is NOT given in details

MSLA (2)

- N_2 is furthest away from N_0, and it is closest to N_4.

- For N_2 (traffic weight 2400) to go through N_4, it requires link (4,0) to upgrade from 9.6 Kbps to 56 Kbps. The upgrade cost is calculated as
 - $\text{upgrade}(4, 2400) = c(4,0,1) - c(4,0,0)$
 - Tradeoff $\tau(4) = c(2,4,0) + (c(4,0,1)-c(4,0,0)) - c(2,0,0) > 0$, Not pick.

- Next, N_4 is furthest away from N_0, and it is closest to N_3
 - N_4 goes through N_3, no upgrade is needed, since $\text{spare}_{\text{capacity}}(3) > 4800$
 - It is the best tradeoff
Next, the most attractive tradeoff is to route N2 through N3
• no upgrade is needed, since spare_capacity (3) = 28000 − 9600 − 4800 = 13,600 > W2 (2400)

Finally, connect N3 to N1 and upgrade (1,0) to 128 Kbps link
Esau-Williams: 20 Nodes with 9.6 Kbps Links

- The design costs $26,963, little use of traffic aggregation by sharing links (10 sites share links, all other star into the center N0)
 - Link capacity is not enough for supporting traffic aggregation

Esau-Williams: 20 Nodes with 56 Kbps Links

- More expensive design, costing $30,160, though more traffic aggregation by sharing links
 - Too much link capacity wasted on the peripheral of the network
MSLA: 20 nodes with Multi-speed links

- A center D56 tree involving (N0, N2, N5, N10, N17) and a peripheral D96 tree connecting other nodes; Cost: $22,760