
UC. Colorado Springs CS1150

CS1150
Principles of Computer Science

Introduction (Part II)

Yanyan Zhuang
Department of Computer Science
http://www.cs.uccs.edu/~yzhuang

Review

UC. Colorado Springs CS1150

• Terminology
o Class

} Every Java program must have at least 1 class (same name as Java file)

o Method
} Java programs contains a special method called “main”

¨ public static void main (String[] args) {…..}

¨ The “main” method is where a Java program starts execution

o Statements
} Statements represent actions

} Statements must end with a ;

Review

UC. Colorado Springs CS1150

• Terminology
o Reserved words (keywords)

} Words that have specific meaning/cannot be used for other purposes

} public, class, byte, int, long, float, double, …

o Blocks
} Class block and method block, using {}

o Comments
} // This is a line of comment

} /* This comment can span

across several lines */

Review

UC. Colorado Springs CS1150

• Identifier
o A name chosen by the programmer for: classes, methods,

variables, and constants

Overview

UC. Colorado Springs CS1150

• Numerical Data Types

• Variables and constants

• Packages

• Data formatting

• Data casting

Numerical Data Types

UC. Colorado Springs CS1150

• Reading for primitive data types:
o https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

 Name Range Storage Size

byte –27 to 27 – 1 (-128 to 127) 8-bit signed

short –215 to 215 – 1 (-32768 to 32767) 16-bit signed

int –231 to 231 – 1 (-2147483648 to 2147483647) 32-bit signed

long –263 to 263 – 1 64-bit signed
 (i.e., -9223372036854775808 to 9223372036854775807)

 float Negative range: 32-bit floating point
 -3.4028235E+38 to -1.4E-45
 Positive range:
 1.4E-45 to 3.4028235E+38

 double Negative range: 64-bit floating point
 -1.7976931348623157E+308 to -4.9E-324

 Positive range:
 4.9E-324 to 1.7976931348623157E+308

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Numeric Operators

UC. Colorado Springs CS1150

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

Integer Division

UC. Colorado Springs CS1150

+, -, *, /, and %

5 / 2 yields an integer 2

5.0 / 2 yields a double value 2.5

5 % 2 yields 1 (the remainder of the division) –
often called modular operation

ComputeExpression.java: example

Remainder Operator %

UC. Colorado Springs CS1150

• Remainder is very useful in programming
o For example, an even number % 2 is always 0 and an odd

number % 2 is always 1

o So you can use this property to determine whether a
number is even or odd

System.out.println() prints only strings, but converts number to
string to print

Java Identifiers

UC. Colorado Springs CS1150

• An identifier
o Example

} Class/method/variable/constant name (can refer by name later)

o Rule
} A sequence of characters that consist of letters, digits, underscores

(_), and dollar signs ($), NO SPACES
} Must start with a letter, _ or $, CANNOT start with a digit
} CANNOT be a reserved word, true, false, or null
} Can be of any length

o Convention
} Class names start with an upper case letter, variable/method names

start with a lower case letter, constants all caps

Variables and Constants

UC. Colorado Springs CS1150

• Variable
o Used to store a value that may change

o E.g., double length; // declare a variable length

length = 3.5; // assign 3.5 to length -- length can change

double length = 3.5; // an (almost) equivalent way as above

o How to use: Declare à assign a value à do something to it
} A variable can only be declared once (double length;)

} A variable must have a value (be initialized) before we use it (length=3.5;)

} Can modify their value, display their value, use them in formulas

} Example: Arithmetic.java, Circle.java (how to declare/use variables)

Variables and Constants

UC. Colorado Springs CS1150

• Constant
o Used to store a value that will NEVER change

o Constants follow certain rules
} Must have a name (a meaningful name, like variables)

¨ With all uppercase letters (Java convention)

} Declared using the keyword final
¨ Example: final double PI = 3.14159;

} Circle.java uses a constant

Write pseudocode

UC. Colorado Springs CS1150

• Not real code, but help organize program logic
• Can use a mix of programming language + natural

language
• Example: Calculate the area of a circle (Circle.java)

Input: radius
Output: area of the circle

area = pi * radius * radius
Print area

Also see Rectangle.java

Reading Input from the Console

UC. Colorado Springs CS1150

1. Import java.util.Scanner and create a Scanner object

Scanner keyboard = new Scanner(System.in);

2. Use the method nextDouble() to obtain to a
double value. For example,

System.out.print("Enter a double value:");

double d = keyboard.nextDouble();

3. After finishing the Scanner object, close it
keyboard.close();

Reading Input from the Console

UC. Colorado Springs CS1150

Scanner keyboard = new Scanner(System.in);

int value = keyboard.nextInt();
Example: Average.java, ComputeArea1.java, ComputeArea2.java

Method Description

nextByte() reads an integer of the byte type.

nextShort() reads an integer of the short type.

nextInt() reads an integer of the int type.

nextLong() reads an integer of the long type.

nextFloat() reads a number of the float type.

nextDouble() reads a number of the double type.

Trace a Program Execution

UC. Colorado Springs CS1150

public class ComputeArea {
/** Main method */
public static void main(String[] args) {

double radius;
double area;

// Assign a radius
radius = 20.3;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +

radius + " is " + area);
}

}

no valueradius

allocate memory
for radius

Trace a Program Execution

UC. Colorado Springs CS1150

public class ComputeArea {
/** Main method */
public static void main(String[] args) {

double radius;
double area;

// Assign a radius
radius = 20.3;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +

radius + " is " + area);
}

}

no valueradius

memory

no valuearea

allocate memory
for area

Trace a Program Execution

UC. Colorado Springs CS1150

public class ComputeArea {
/** Main method */
public static void main(String[] args) {

double radius;
double area;

// Assign a radius
radius = 20.3;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +

radius + " is " + area);
}

}

20.3radius

no valuearea

assign 20.3 to radius

Trace a Program Execution

UC. Colorado Springs CS1150

public class ComputeArea {
/** Main method */
public static void main(String[] args) {

double radius;
double area;

// Assign a radius
radius = 20.3;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +

radius + " is " + area);
}

}

20.3radius

memory

1294.6178area

compute area and assign
it to variable area

Trace a Program Execution

UC. Colorado Springs CS1150

public class ComputeArea {
/** Main method */
public static void main(String[] args) {

double radius;
double area;

// Assign a radius
radius = 20.3;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +

radius + " is " + area);
}

}

20.3radius

memory

1294.6178area

print a message to the
console

Packages

UC. Colorado Springs CS1150

• A bunch of related classes grouped together
o Mechanism for organizing Java classes

• Java contains many predefined packages
o To access class/method in a predefined package use import

o import java.util.Scanner;

Packages

UC. Colorado Springs CS1150

• To create your own package
o File (with project CS1150 selected) à New à Package

o First line in your Java class: package your_package_name

• Structure
o A project contains package(s)

o A package contains Java file(s)

o A Java file contains class(es)

Let’s Practice!

UC. Colorado Springs CS1150

• Please write a program ComputeRadius.java:
input the area of a circle, calculate its radius
o Write pseudocode to guide your logic

o Use constant PI

o Use Scanner to get input value area (a double variable)

o Print the value of the radius
} radius = the square root of (area/PI)

} How to do square root? Math.sqrt(area/PI) – you will use this in a
homework question

24

Problem: Converting Temperatures
Write a program that converts a Fahrenheit degree
(read from keyboard) to Celsius using the formula:

Print the resulting Celsius with two decimal points.

)32)((95 -= fahrenheitcelsius

Converting Temperatures

UC. Colorado Springs CS1150

• Pseudocode
o Input? Output?

o How to calculate Celsius given a Fahrenheit value?

o How to print the result using two decimal points?
} Data formatting

)32)((95 -= fahrenheitcelsius
Note: you have to write
celsius = (5.0 / 9) * (fahrenheit – 32)

Formatting decimal output

UC. Colorado Springs CS1150

• Use DecimalFormat class
o import java.text.DecimalFormat;

o DecimalFormat df = new DecimalFormat("000.##");

o System.out.println(df.format(celsius));

o 0: a digit

o #: a digit, zero shown as absent
} 72.5 is shown as 072.5

} 21.6666….. is shown as 021.67

o More information
https://docs.oracle.com/javase/tutorial/i18n/format/decimalFormat.html

https://docs.oracle.com/javase/tutorial/i18n/format/decimalFormat.html

Formatting decimal output

UC. Colorado Springs CS1150

• Use System.out.format
o System.out.format("the %s jumped over the %s, %d times",

"cow", ”moon", 2);
} the cow jumped over the moon, 2 times

o System.out.format("%.1f", 10.3456);
} 10.3 // one decimal point

o System.out.format("%.2f", 10.3456);
} 10.35 // two decimal points

o System.out.format("%8.2f", 10.3456);
} 10.35 // Eight-wide, two decimal points

Example: Fahrenheit2Celsius.java

Let’s Practice!

UC. Colorado Springs CS1150

• Please write a program: given the radius of a
circle, calculate its perimeter, and print the
result with 4 decimal points
o Write pseudocode to guide your logic

o Use constant PI

o Use Scanner to get input value radius

o Print the value of the perimeter

Data Casting

UC. Colorado Springs CS1150

• When you explicitly tell Java to convert a
variable from one data type to another type
o Think of data types as bottles of different sizes

} Can put the contents of a smaller variable (bottle) into a larger
variable (bottle)

} Cannot put the contents from a larger variable (bottle) into a smaller
variable (bottle), without losing information

} Cheat sheet: int (32 bits), long (64 bits), float (32 bits), double (64
bits)

Data Casting

UC. Colorado Springs CS1150

• Convert a variable from one data type to another
o Can put the contents of a smaller variable (bottle) into a larger

variable (bottle)
} double d = 3; // widening the type: 3 à 3.0
} Java does this automatically

o Cannot put the contents from a larger variable (bottle) into a
smaller variable (bottle), without losing information
} int num = (int)3.6; // narrowing the type: 3.6 à 3
} Must be done explicitly

o Cheat sheet: int (32 bits), long (64 bits), float (32 bits), double (64
bits)

o Example: Casting.java

31

Conversion Rules
When performing a binary operation involving two
operands of different types, Java automatically converts
the operand based on the following rules:

1. If one of the operands is double, the other is converted
into double.

2. Otherwise, if one of the operands is float, the other is
converted into float.

3. Otherwise, if one of the operands is long, the other is
converted into long.

4. Otherwise, both operands are converted into int.

The smaller type is converted to the larger type before operation occurs

Numeric Literals

UC. Colorado Springs CS1150

• Variables and constants: have names

• Literals: A constant value that has no name
o Integer literal

} Values we assign to an integer variable: int i = 123;

o Floating-point literal
} To indicate float/double, use suffix f/d

¨ Leaving off the suffix, the number defaults to a double

} Values assigned to float/double variable: float f = 12.34f; or double d = 12.34;
¨ float floatValue = 71.71f; If leave off “f” would get error: cannot convert

double to float

o Scientific notation
} 1.23456 x 102 => 1.23456E2

} 1.23456 X 10-2 => 1.23456e-2

Augmented Assignment Operators

UC. Colorado Springs CS1150

• +, -, *, / and % operators
o Each can be combined with the assignment operator (=)

} a = a + 3; => a += 3;

} Read the equation from right to left: variable a’s value plus 3, and
assign it back to variable a

o Same as -=, *=, /= and %=
} a = a - 2; => a -= 2;

} b = b*3.0; => b *= 3.0;

} c = c % 5; => c %= 5;

Increment and Decrement Operators

UC. Colorado Springs CS4500/5500

• Increment: ++ Decrement: --
o Operator can be placed before or after variables (postfix)

int i = 1, j = 3;

i++; // Same as i = i + 1; i will become 2

j--; // Same as j = j – 1; j will become 2

o Alternatively (prefix)
int i = 1, j = 3;

++i; // Same as i = i + 1; i will become 2

--j; // Same as j = j – 1; j will become 2

o Placement of prefix or postfix cause different results when in
expressions so be careful (more details later)

Summary

UC. Colorado Springs CS1150

• Data types and calculation
o Variables and constants

• Reading input

• Data formatting/casting

