
UC. Colorado Springs CS1150

CS1150
Principles of Computer Science

Introduction

Yanyan Zhuang
Department of Computer Science
http://www.cs.uccs.edu/~yzhuang

Intro of Intro

UC. Colorado Springs CS1150

• Yanyan Zhuang
o PhD 2012
o yzhuang@uccs.edu
o Office ENGR 184

• Office hours
o M/W: 11:15am – 12:00pm
o TA’s schedule – Abdullah Abu Mouzah (aabumouz@uccs.edu)

} Tue and Wed: 9:30AM - 11:00AM ENG 232
} Fri: 9:30AM - 11:00 AM ENG 138

o Math center https://www.uccs.edu/mathcenter/schedules

• Canvas: announcement, assignment, tests (need to opt in)

mailto:yzhuang@uccs.edu
https://www.uccs.edu/mathcenter/schedules

Lectures, Assignments, Project, Exams

UC. Colorado Springs CS1150

• Lectures
o Monday and Wednesday, ENGR 138

• Assignments (individual)
o Java programming assignments

• Attendance

• Midterm and Final (in class, online, open-book/notes)
o Midterm: TBD

o Final: 12/18

• Syllabus
o http://cs.uccs.edu/~yzhuang/CS1150/fall2019/syllabus.pdf

http://cs.uccs.edu/~yzhuang/CS1150/fall2019/syllabus.pdf

Outline

UC. Colorado Springs CS1150

• What will you learn?

• Programming languages

• Anatomy of a Java program

What will you learn?

UC. Colorado Springs CS1150

• Programming with emphasis on computer
science concepts
o Particularly on the concepts of abstraction in problem

solving
} Primitive data types

} Selection statements

} Loops and methods

} Arrays, strings and so on

} …

UC. Colorado Springs CS1150

Introduction

Programming

UC. Colorado Springs CS1150

• Computer programs, known as software, are
instructions to the computer

• We (programmers) tell a computer what to do
through programs
o Computers do not understand human languages (Siri, doh!),

need to use computer languages to communicate with them

o Most programs are written using (high-level) programming
languages

Programming Languages

UC. Colorado Springs CS1150

• The high-level languages are English-like and
easy to learn and program
o For example, the following is a high-level language

statement that computes the area of a circle with radius 5:
} area = 5 * 5 * 3.1415;

• We will learn Java in this course
o What are the other programming languages available?

Let’s create our first Java program!

UC. Colorado Springs CS1150

• Please open Eclipse (in Desktop à Software, first time takes 1 min):
o To create a project

} File à New à Project à Choose Java project à Fill in project name (e.g., CS1150) à Finish

} If you see “Open Associated Perspective”, choose No

o To import existing code

} File (with src selected) à Import à Select “Archive File” under “General” à Browse and locate
your zip (no need to unzip it) à Finish

o To create new code

} File (with project CS1150 selected) à New à Other à Class à Fill in class name à Finish

o To find the location of your code

} Project à Properties (look for Location)

¨ Windows: C:\Users\username\eclipse-workspace\project_name

¨ Mac: /Users/username/Documents/eclipse-workspace/project_name

} Code is under project_name\src\ (Windows) or project_name/src/ (Mac)

o Eclipse video tutorial: https://www.youtube.com/watch?v=Wv6nxnVKYsw
} Skip things that you don’t understand

https://www.youtube.com/watch?v=Wv6nxnVKYsw

Anatomy of a Java Program

UC. Colorado Springs CS1150

1. Class name

2. Main method

3. Statements

4. Statement terminator

5. Reserved words

6. Comments

7. Blocks

Class Name

UC. Colorado Springs CS1150

• Every Java program must have at least one
class. Each class has a name (same name as
.java file)
o By convention, class names start with an uppercase letter

o In this example, the class name is Welcome

// This program prints Welcome to Java!
public class Welcome {
public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

Main Method

UC. Colorado Springs CS1150

• In order to run a class, the class must contain a
method named main
o The program is executed from the main method

// This program prints Welcome to Java!
public class Welcome {
public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

Statement

UC. Colorado Springs CS1150

• A statement represents an action or a
sequence of actions
o The statement System.out.println("Welcome to Java!") is a

statement to display the greeting "Welcome to Java!”

// This program prints Welcome to Java!
public class Welcome {
public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

Statement Terminator

UC. Colorado Springs CS1150

• Every statement in Java ends with a semicolon
(;)

// This program prints Welcome to Java!
public class Welcome {
public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

Reserved words

UC. Colorado Springs CS1150

• Reserved words or keywords
o Words that have a specific meaning to Java and cannot be

used for other purposes in the program

o For example, when Java sees class, it understands that the
word after class is the name for the class

// This program prints Welcome to Java!
public class Welcome {
public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

Blocks

UC. Colorado Springs CS1150

• A pair of curly braces in a program forms a
block that groups a component of a program

public class Test {
 public static void main(String[] args) {
 System.out.println("Welcome to Java!");
 }
}

Class block

Method block

{ … }

UC. Colorado Springs CS1150

• Denotes a block

// This program prints Welcome to Java!
public class Welcome {
public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

(…)

UC. Colorado Springs CS1150

• Used with methods
o To group together arguments

// This program prints Welcome to Java!
public class Welcome {
public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

// …

UC. Colorado Springs CS1150

• Another kind of comments is /* … */
o Block comment

// This program prints Welcome to Java!
public class Welcome {
public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

" … "

UC. Colorado Springs CS1150

• Do not use ‘ … ‘ for Strings
o They are used for characters instead

// This program prints Welcome to Java!
public class Welcome {
public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

Special Symbols

UC. Colorado Springs CS1150

Character Name Description

 {}

()

[]

//

" "

;

Opening and closing
braces
Opening and closing
parentheses
Opening and closing
brackets
Double slashes

Opening and closing
quotation marks
Semicolon

Denotes a block to enclose statements.

Used with methods.

Denotes an array.

Precedes a comment line.

Enclosing a string (i.e., sequence of characters).

Marks the end of a statement.

Identifiers

UC. Colorado Springs CS1150

• An identifier is
o A name chosen by the programmer for: classes, methods,

variables, and constants

// This program prints Welcome to Java!
public class Welcome {
public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

Let’s do more practice!

UC. Colorado Springs CS1150

• To import our code

o File à Import à Archive File à Browse (find your

downloaded zip file) à Open

o MyFirstWords, MyFirstLines

Programming Style and Documentation

UC. Colorado Springs CS1150

• Appropriate Comments

• Naming Conventions

• Proper Indentation and Spacing Lines

• Write pseudocode

Appropriate Comments

UC. Colorado Springs CS1150

• Include a summary at the beginning of the program to
explain what the program does /* */ (block comment)
o Include your name, class section, date, and a brief description at the

beginning of the program
} /* Programmer: Yanyan Zhuang

* Class: CS 1150

* Purpose: Print a string to the console

* Date modified: 6/6/2019, 6/10/2019

*/

• Use // above or after a line of statement to indicate its
purpose, when necessary (single-line comment)

Naming Conventions

UC. Colorado Springs CS1150

• Choose meaningful and descriptive names
• Class names:

o Capitalize the first letter of each word in the name. For example,
the class name ComputeExpression

• A name cannot contain spaces
o ComputeExpression, not Compute Expression

o Convention
} Class names start with an upper case letter
} Variable/method names start with a lower case letter
} Constants all caps

Proper Indentation and Spacing

UC. Colorado Springs CS1150

• Indentation
o Indent the same code blocks with the same indentation

level

• Spacing
o Use blank line to separate segments of the code

(ComputeExpression)

Write pseudocode

UC. Colorado Springs CS1150

• Not real code

• Get back to this in a bit!!

Summary

UC. Colorado Springs CS1150

• Java program

• Programming style

• Data types and calculation

