CS1150

Principles of Computer Science
Loops

Yanyan Zhuang
Department of Computer Science

http://www.cs.uccs.edu/~vzhuang

CS1150 UC. Colorado Springs

* Boolean variables

o Assume x=3, y=1, true or false? !(x<2) || y>3

* |f statement

o Be careful: multiple/nested if...else

o By default: else is mathced with if?

* Switch statement

o Be careful: where to use break

} CS4500/5500 UC. Colorado Springs

Overview

* While loop

* Do...while loop

* For loop

| 2 CS1150 UC. Colorado Springs

Opening Problem: Why Loops?

Problem:

/’System.out.println("Welcome to Javal!'");
System.out.println("Welcome to Java!");
System.out.println("Welcome to Java!");
System.out.println("Welcome to Java!");
System.out.println("Welcome to Java!");
System.out.println("Welcome to Java!");

100
times

System.out.println ("Welcome to Java!'!");
System.out.println ("Welcome to Java!'!");
\\System.out.println("Welcome to Javal!");

Introducing while Loops

int count = 0;

while (count < 100) {
System.out.println("Welcome to Java'") ;
count++;

}

Introducing while Loops

int count = 0; while (loop-continuation-condition) {
while (count < 100) {

}

System.out.println ("Welcome to Java"); // IOOp—bOdy;

t+;
coun Statement(S);

b
How It Works

* The loop continuation condition - boolean expression - 1s evaluated
« If the condition is true, the statements in the loop body are executed
* When execution of loop body statements 1s complete, control returns to the
loop condition
* The loop continuation condition is evaluated again
* When the loop condition is false, control goes to statements following the loop

Note: if the loop continuation condition evaluates to false the first time, the entire
while loop is skipped

while Loop Flow Chart

while (loop-continuation-condition) {

// 1oop-body;

Statement(s);
} \

!

loop-
continuation-
condition?

false

Statement(s) |

(loop body)

int count = 0;
while (count < 100) {

System.out.println("Welcome to Java!");

count+-+;
E

count = O;I

L

(count < 100)? false

true

| System.out.println("Welcome to Javal!");

count++;

!

Rules for While Loops

* The loop condition must be a boolean expression
o Boolean expression must be in parentheses

o Boolean expressions are formed using relational or logical operators

Loop condition

o Usually a statement before while loop "initializes" loop condition to true

o Some statement within loop body eventually change the condition to
false

If the condition is never changed to false, the program is
forever in the loop

o This is called an "infinite loop"

Curly braces are not necessary if only one statement in loop

o But best practice is to always include curly braces

} CS4500/5500 UC. Colorado Springs

Trace while Loop

Initialize count

int count = O; (which we often call control variable)

while (count < 2) {
System.out.println("Welcome to Java!");

count+-;

h

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count+-;

h

Trace while Loop, cont.

int count = 0;

while (count <2) {

System.out.println("Welcome to Java!");

count+-;

h

Trace while Loop, cont.

. Increase count by 1
int count = 0; count is 1 now

while (count < 2) {

System.out.println("Welcome to Java!¥

count+-r;

h

Trace while Loop, cont.

(count < 2) is still true since count

int count = 0; is 1

while (count <2) {

System.out.println("Welcome to Java!");

count+-;

h

Trace while Loop, cont.

Print Welcome to Java

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count+-;

h

Trace while Loop, cont.

. Increase count by 1
int count = 0; count is 2 now

while (count < 2) {

System.out.println("Welcome to Java!¥

count+-r;

h

Trace while Loop, cont.

(count < 2) is false since count is 2

int count = 0; now

while (count <2) {

System.out.println("Welcome to Java!");

count+-;

h

Trace while Loop, cont.

. The loop exits. Execute the next
int count = 0; statement after the loop.

while (count < 2) {

System.out.println("Welcome to Javal!");

count+-;

;

Let’s look at the first example PrintNTimes.java

Infinite loop example

* In this example, nothing in the loop body changes the value
of the control variable

count =1; // Initializes the loop control variable

while (count <=5) {
System.out.printIn("The value of count is " + count);

}

* This is an infinite loop because (count <= 5) is always true

o Nothing changes the value of count in the loop body

If you accidentally create an infinite loop, use terminate
button (red square) in Eclipse to make it stop

} CS4500/5500 UC. Colorado Springs

* Placing a semicolon at the end of the while-clause
creates an infinite loop - be careful!

int iteration = 1,
while (iteration <= 10); {
System.out.printIn("Iteration =" + iteration);

Iiteration++;

| 2 CS4500/5500 UC. Colorado Springs

Off-by-one Error

* Common issue with loops: Loop body executes one more/less
than expected

* Example:
System.out.printIn("l'm going to count to three, ready set....");
count=1;
while (count < 3) {
System.out.printin(count);

count++;

}

} CS4500/5500 UC. Colorado Springs

Off-by-one Error

* Common issue with loops: Loop body executes one more/less than
expected

* Example:

System.out.printIn("l'm going to count to three, ready set....");
count =1;

while (count < 3) {

System.out.println(count);

count++;

}
Output:

I'm going to count to three, ready set....

| 2 CS4500/5500 UC. Colorado Springs

Problem: Repeat Addition Until Correct

See RepeatAdditionQuiz.java.

Ending a Loop with a Sentinel Value

Often the number of times a loop is executed is not

predetermined. You may use an input value to signify the end
of the loop.

Such a value is known as a sentinel value.

Write a program that reads and calculates the sum of an
unspecified number of integers (e.g., the sumof 2, 3, 5, 7,
11...). The input O signifies the end of the input.

See SentinelValue.java.

do-while Loop

do { ’i

// Loop body; Statement(s)
(loop body)
Statement (s) ;
} while (loop-continuation-condition); l
loop-
true continuation-
Example: TestDoWhile.java condition?

* The loop body is executed
e The loop condition - boolean expression - is evaluated
* |f the loop condition is true, then loop body is

executed again
If the loop condition is false, control is transferred

to the statement following the loop

Do...While Loop Rules (same as while
loop)

* The loop condition must be a boolean expression

o Boolean expression must be in parentheses

o Boolean expression is formed using relational and logical operators
* Loop condition

o Generally, some statement before the while loop "initializes" the loop
condition to true

o Some statement within the loop body must eventually change the
condition to false

* If the condition is never changed to false, the program will be
forever stuck in the loop

o This is called an "infinite loop"

* Curly braces are not necessary if only one statement in loop but best
practice is to always include curly braces

} CS4500/5500 UC. Colorado Springs

* Recall how placing a semicolon at the end of the
while-clause creates an infinite loop

int iteration = 1;
while (iteration <= 10); { // Unnecessary semicolon

System.out.printIin("lteration =" + iteration);

Iiteration++;

} CS4500/5500 UC. Colorado Springs

* In the case of do-while you must include the
semicolon since it ends the loop!

int iteration = 1;
do {
Iiteration++;

System.out.printIn("lteration =" + iteration);

} while (iteration <= 5); // Necessary semicolon

} CS4500/5500 UC. Colorado Springs

Loop Design Strategies

* Four steps when writing a loop.

o Step 1: Identify what statements need to be repeated

o Step 2: Wrap these statements in a loop using while or do...while:
while (true) {
Statements;
}
o Step 3: Determine what condition the code should check (replace true)
o Step 4: Add code in the body that eventually causes the condition to
become false

while (loop-continuation-condition) {
Statements;
Additional statements for controlling the loop;

Example: Powers.java

| 2 CS4500/5500 UC. Colorado Springs

Summary

* While loop

* Do...while loop

| 2 CS1150 UC. Colorado Springs

