
UC. Colorado Springs CS1150

CS1150
Principles of Computer Science

Objects and Classes

Yanyan Zhuang
Department of Computer Science
http://www.cs.uccs.edu/~yzhuang

2

OO Programming Concepts

• Object-oriented programming (OOP) involves
programming using objects.

• An object represents an entity in the real world that can
be distinctly identified. E.g., a student, a desk, a circle,
a button can all be viewed as objects.

• An object has a unique identity, state, and behaviors.
o The state of an object consists of a set of data fields (also

known as properties/attributes) with their current values.

o The behavior of an object is defined by a set of methods.

Java’s predefined objects

UC. Colorado Springs

• We've used predefined objects:
o Import the object’s class
o Create an object (aka instance) from that class
o Use methods defined for that object

import java.util.Scanner;
public class Assignment {

public static void main(String[] args) {
// Create a Scanner object to read input from the user
Scanner input = new Scanner (System.in);
int d = input.nextInt();

}
}

Object state and behavior

UC. Colorado Springs

• An object has two important pieces: state and
behavior

• State
o The properties that define an object: things an object has

o A "dog" object may have properties such as color, size, gender

• Behavior
o The methods that define an object: things an object does

o A "dog" object may have behaviors such as sleep, bark, sit, etc.

• See StudentApp1.java

Object vs. Class

UC. Colorado Springs

• An object represents an entity like a car,
house, circle, dog, cat, student, etc.

• A class is used to construct an object
o It defines an object’s attributes and behaviors: the blueprint

o Just as you can create more than one building from a
blueprint, you can create more than one object from a class

• A class is not an object - it's used to construct
an object

6

Creating Classes (Blueprints)

class ClassName{

…

}

Example:
class Circle{

double radius;

…

}

7

Declaring Objects (instances of a class)

To declare an object:

ClassName objectName;
Example:
Circle myCircle;
Student myStudent;

To create an object:

new ClassName();

8

Declaring/Creating Objects in a Single Step

ClassName objectName = new ClassName();

Example:
Circle myCircle = new Circle();

Create an objectAssign object reference

See StudentApp2.java

How to organize class and test code

UC. Colorado Springs

• Place the new class in the same file as the
main method
• Only one class contains the main method (test class)

• The class with the main method needs to be used as the name of the
.java file

• Only one class can be declared as public

• Follow the examples…

10

Reference Data Fields
The data fields can be of primitive data types and reference
types (arrays, Strings, and objects). The following Student
class contains a data field “name” of String type.

public class Student {
String name; // name has default value null
int age; // age has default value 0
boolean isScienceMajor; // isScienceMajor has default value false
char gender; // c has default value '\u0000'

}

The default value of a data field is:
null for a String type, 0/0.0 for a numeric type, false for a boolean
type, and '\u0000' for a char type.

11

Default Value for a Data Field

The default value of a data field is:
null for a String type, 0/0.0 for a numeric type, false for a
boolean type, and '\u0000' for a char type.

public class Test {
public static void main(String[] args) {

Student student = new Student();
System.out.println("name? " + student.name); //null
System.out.println("age? " + student.age);
System.out.println("isScienceMajor? " + student.isScienceMajor);
System.out.println("gender? " + student.gender);

}
}

12

Scope of Variables

qThe scope of a local variable starts from its
declaration and continues to the end of the block
that contains the variable.
q A local variable must be initialized explicitly before it can be used.

qThe scope of instance and static variables is the
entire class. They can be declared anywhere inside
a class.

13

Instance Variables and Static Variables

Instance variables belong to a specific instance /
object: a circle’s radius is 10, a student’s age is 18

Static variables belong to an entire class

14

Static Variables, Constants (and
Methods)

Static variables are shared by all the instances of
the class. Static constants are final variables shared
by all the instances of the class.

To declare static variables, constants, and methods,
use the static modifier.

15

Static Variables

See StudentApp3.java (static var example)

A static variable is stored at a common location
If one object changes its value, all objects gets the new value

Static Constants

UC. Colorado Springs

• Constants of a class are shared by ALL objects
of a class

• Constants by default use static keyword
// Declare constants a class

final static double PI = 3.14159;

17

Objects vs. Class

An object has both state and behavior
§ The state defines the object: properties

§ The behavior defines what the object does: methods

§ Is a reference variable

Class Name: Circle

Data Fields:

radius is _______

Methods:

getArea

Circle Object 1

Data Fields:

radius is 10

Circle Object 2

Data Fields:

radius is 25

Circle Object 3

Data Fields:

radius is 125

A class template

Three objects of
the Circle class

knows

does

See StudentApp4.java (method example)

18

Accessing Object’s Members

qReferencing the object’s properties (array’s length):

objectName.data

e.g., myCircle.radius

qInvoking the object’s method (String’s length()):

objectName.methodName(arguments)

e.g., myCircle.getArea()

19

Classes

 class Circle {

/** The radius of this circle */
double radius = 1.0;

/** Construct a circle object */
Circle() {
}

/** Construct a circle object */
Circle(double newRadius) {
 radius = newRadius;
}

/** Return the area of this circle */
double getArea() {
 return radius * radius * 3.14159;
}

 }

Data field

Method

Constructors

20

Classes

Classes define objects of the same type (circles,
students, etc).

A Java class uses variables to define data fields and
methods to define behaviors.

A Java class provides a special type of methods,
known as constructors, which are invoked to
construct objects from the class.

21

Constructors

Circle() {
…

}
new Circle();

Circle(double newRadius) {
radius = newRadius;
…

}
new Circle(5.0);

Constructors are a special kind
of methods that are invoked to
construct objects.

Note: no return value!

22

Constructors, cont.
• Constructors must have the same name as the

class itself.

• Constructors do not have a return type—not
even void.

• Constructors are invoked using the new
operator when an object is created. Constructors
play the role of initializing objects.

A constructor with no parameters is referred to as a
no-arg constructor.

23

Default Constructor

A class may be defined without constructors.

In this case, a no-arg constructor with an empty
body is implicitly defined in the class.

This constructor, called a default constructor, is
provided automatically only if no constructors are
explicitly defined in the class.
If we define any constructor at all, the default one is no longer
available.

See StudentApp5.java, StudentApp6.java (constructor examples)

Constructors Summary

UC. Colorado Springs

• A constructor has EXACTLY the same name as the class

• No return type is specified! Not even void

• NOT necessary to write a constructor for your classes!
o Generally you will provide at least the no-arguments constructor - Cat()

o If you don't - if you specify NO CONSTRUCTORS - Java automatically
creates a default constructor
} It takes no arguments

} It has an empty body - no code!

} It does nothing to the instance variables

Overloaded Constructors

UC. Colorado Springs

• A constructor can be overloaded (StudentApp5)
o public StudentD (){

}
o public StudentD (String lastName, String firstName){

this.lastName = lastName;
this.firstName = firstName;

}
o public StudentD (int ID, int level){

this.studentID = ID;
this.academicLevel = level;

}

26

The this Keyword

qThe this keyword is the name of a reference
that refers to an object itself.

qOne common use of the this keyword is
reference a class’s hidden data fields.

qAnother common use of the this keyword to
enable a constructor to invoke another
constructor of the same class.

27

Reference the Hidden Data Fields
 public class F {
 private int i = 5;
 private static double k = 0;

 void setI(int i) {
 this.i = i;
 }

 static void setK(double k) {
 F.k = k;
 }
}

Suppose that f1 and f2 are two objects of F.
F f1 = new F(); F f2 = new F();

Invoking f1.setI(10) is to execute
 this.i = 10, where this refers f1

Invoking f2.setI(45) is to execute
 this.i = 45, where this refers f2

28

Calling Overloaded Constructor

public class Circle {
 private double radius;

 public Circle(double radius) {
 this.radius = radius;
 }

 public Circle() {
 this(1.0);
 }

 public double getArea() {
 return this.radius * this.radius * Math.PI;
 }
}

Every instance variable belongs to an instance represented by this,
which can be omitted

this must be explicitly used to reference the data
field radius of the object being constructed

this is used to invoke another constructor

Practice

UC. Colorado Springs CS4500/5500

1. Create a class called Dog

2. Dog has attributes: name, breed, color
(String) and age (int)

3. Create a dog object dog1, with no-arg
constructor, and print its attributes

4. Assign dog1 with name Charlie, breed Husky,
color white, age 2, then print its attributes

Practice

UC. Colorado Springs CS4500/5500

5. Create a static variable noOfDogs, increase it
after creating dog1

6. Implement the print function in a method in
the Dog class, called printMe(), and invoke it
using the dog1 object

7. Create a no-arg constructor Dog(), and
another Dog(String name, String breed)

Practice

UC. Colorado Springs CS4500/5500

8. Create another object dog2 with Dog("Max",
"Lab"), increase noOfDogs after creating
dog2, and invoke printMe()

9. Assign values to dog2's age (1), and color
(gold), and invoke printMe()

10.Move Dog.noOfDogs++; in the constructors,
print noOfDogs in main()

32

Array of Objects
Student[] students = new Student[10];
Circle[] circleArray = new Circle[10];

An array of objects is actually an array of
reference variables (StudentApp6.java)
So invoking circleArray[1].toString() involves two
levels of referencing:

1. circleArray references to the entire array.
2. circleArray[1] references to a Circle object.

33

Array of Objects, cont.
Circle[] circleArray = new Circle[10];

34

Differences between Variables of
Primitive Data Types and Object Types

1 Primitive type int i = 1 i

Object type Circle c c
=

reference

Created using new Circle()

c: Circle

radius = 1

35

Copying Variables of Primitive Data
Types and Object Types

i

Primitive type assignment int i = j

 Before:

 1

 j

2

i

After:

 2

 j

2

c1

Object type assignment c1 = c2

 Before:

 c2

c1

After:

c2

c1: Circle
radius = 5

c2: Circle
radius = 9

c1: Circle
radius = 5

c2: Circle
radius = 9

Objects and Reference Variables

UC. Colorado Springs

• We first saw reference variables with arrays - an array is an object
o Primitive Types

} Declare an integer -> int number = 5;
} The declaration indicates type of data you are declaring, and allocates memory

o Array Types
} Declare an array -> int[] number;
} The declaration indicates

¨ type of data the array will store, but DOES NOT allocate memory
¨ Only creates a storage location for the reference (i.e. number) to the array

o Object Types
} Declare an object -> Student student1;
} The declaration indicates

¨ type of data you are declaring - a Student
¨ DOES NOT allocate memory

37

Passing Objects to Methods

qPass by value for primitive type value (the
value is passed to the parameter)

qPass by value for reference type value (the
value is the reference to the object)

38

Passing Objects to Methods, cont.

39

Caution

Recall that we use
Math.methodName(arguments) (e.g., Math.pow(3, 2.5))

to invoke a method in the Math class. Can we invoke method() using
Scanner.method()?

The answer is no. All Math methods are static methods, which are
defined using the static keyword. However, method() without the static
keyword is non-static. It must be invoked from an object using

objectRefVar.methodName(arguments) (e.g., myCircle.getArea()).

Static Methods

UC. Colorado Springs

• A method that is shared by ALL objects of a class (also called a
class method)

• Can be executed without the need to reference a particular
instant of the class: e.g., Math class – Math.sqrt()

• Can use the object reference but, better to use class name
because it makes it clear that the method is static

• Can be done (will get a warning): int numOfStudents = student1.
getNoOfStudents();

• Better use class name to access the method: int numOfStudents =
Student.getNoOfStudents();

See StudentApp7.java (static method example)

Note

UC. Colorado Springs

• Use instance variables and instance methods when
o When each object of the class needs an independent copy

of a variable

o When instance variables are accessed in methods the
method must be an instance method

• Use static variables and static methods
o When only one copy of the variable is needed and used by

all objects

o When all objects need to share a variable

o When a method is not dependent on a specific instance

Practice

UC. Colorado Springs CS4500/5500

1. Continue with the Dog class example, implement a method
setNoOfDogs() to increment the static variable noOfDogs by
1 (should this method be static or instance?)

2. Invoke setNoOfDogs() in the two constructors to
automatically increment noOfDogs when an object is
created

3. Implement a method getNoOfDogs() to get the total number
of dog objects in the Dog class (should this be static or
instance?)

4. How to invoke getNoOfDogs() in main() to query the total
number of dogs?

43

Visibility Modifiers

By default, a class, variable, or method can be
accessed by any class in the same package.

q public

The class, data, or method is visible to any class in any
package.

q private

The data or methods can be accessed only by the declaring
class.

The getter and setter methods are used to read and modify
private properties.

See StudentApp7-8.java (private example)

44

The private modifier restricts access to within a class, the default
modifier (i.e., no modifier) restricts access to within a package, and
the public modifier enables unrestricted access.

45

The default modifier on a class restricts access to within a package,
and the public modifier enables unrestricted access.

46

NOTE

An object cannot access its private members, as in (b).

It is OK if the object is declared in its own class, as in (a).

47

Why Data Fields Should Be private?

To protect data.

To make code easy to maintain.

Practice

UC. Colorado Springs CS4500/5500

1. Continue with the Dog class example, change the static
variable noOfDogs to private: what else must be changed to
make the code correct?

2. Should the method setNoOfDogs() be public or private?
Why?

3. Should the method getNoOfDogs() be public or private?
Why?

4. How to invoke getNoOfDogs() in main() to query the total
number of dogs?

Summary

UC. Colorado Springs

• Build your own classes and objects

• Constructors

• Static variables and methods

