
UC. Colorado Springs CS1150

CS1150
Principles of Computer Science

Final Review

Yanyan Zhuang
Department of Computer Science
http://www.cs.uccs.edu/~yzhuang

Numerical Data Types

UC. Colorado Springs CS1150

• Reading for primitive data types:
o https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

 Name Range Storage Size

byte –27 to 27 – 1 (-128 to 127) 8-bit signed

short –215 to 215 – 1 (-32768 to 32767) 16-bit signed

int –231 to 231 – 1 (-2147483648 to 2147483647) 32-bit signed

long –263 to 263 – 1 64-bit signed
 (i.e., -9223372036854775808 to 9223372036854775807)

 float Negative range: 32-bit IEEE 754
 -3.4028235E+38 to -1.4E-45
 Positive range:
 1.4E-45 to 3.4028235E+38
 double Negative range: 64-bit IEEE 754
 -1.7976931348623157E+308 to -4.9E-324

 Positive range:
 4.9E-324 to 1.7976931348623157E+308

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Integer Division

UC. Colorado Springs CS1150

+, -, *, /, and %

5 / 2 yields an integer 2

5.0 / 2 yields a double value 2.5

5 % 2 yields 1 (the remainder of the division) –
often called modular operation

Java Identifiers

UC. Colorado Springs CS1150

• An identifier
o A sequence of characters that consist of letters, digits, underscores (_),

and dollar signs ($)
o No spaces

• Must start with a letter, an underscore (_), or a dollar
sign ($)
o It cannot start with a digit

• An identifier cannot be
o A reserved word
o true, false, or null

• An identifier can be of any length

Formatting decimal output

UC. Colorado Springs CS1150

• Use DecimalFormat class
o DecimalFormat df = new DecimalFormat("000.##");

o System.out.println(df.format(celsius));

o 0: a digit
o #: a digit, zero shows as absent

} 72.5 is shown as 072.5

} 21.6666….. is shown as 021.67

o More information
https://docs.oracle.com/javase/tutorial/i18n/format/decim
alFormat.html

https://docs.oracle.com/javase/tutorial/i18n/format/decimalFormat.html

Formatting decimal output

UC. Colorado Springs CS1150

• Use System.out.format
o System.out.format("the %s jumped over the %s, %d times",

"cow", "moon", 2);
} the cow jumped over the moon, 2 times

o System.out.format("%.1f", 10.3456);
} 10.3 // one decimal point

o System.out.format("%.2f", 10.3456);
} 10.35 // two decimal points

o System.out.format("%8.2f", 10.3456);
} 10.35 // Eight-wide, two decimal points

Variables and Constants

UC. Colorado Springs CS1150

• Variable
o Decimal numbers: to indicate float/double, use suffix f/d

} Leaving off the suffix, the number defaults to a double

o float floatValue = 71.71f;
} If leave off “f” would get error: cannot convert double to float

o double doubleValue = 12345.234d;
} If you left off the “d” there is no issue

o Use double (safe!)

Variables and Constants

UC. Colorado Springs CS1150

• Constant
o Used to store a value that will NEVER change

o Constants follow certain rules
} Must have a name (a meaningful name, like variables)

} Name constants with all uppercase letters (Java convention)

} Declared using the keyword final
¨ Example: final double PI = 3.14159;

¨ Let’s look at code samples

Data Casting

UC. Colorado Springs CS1150

• When you explicitly tell Java to convert a
variable from one data type to another type
o Think of data types as cups of different sizes

} Can put the contents of a smaller variable (bottle) into a larger
variable (bottle)

} Cannot put the contents from a larger variable (bottle) into a smaller
variable (bottle), without losing information

} Cheat sheet: int (32 bits), double (64 bits)

10

Conversion Rules
When performing a binary operation involving two
operands of different types, Java automatically converts
the operand based on the following rules:

1. If one of the operands is double, the other is converted
into double.

2. Otherwise, if one of the operands is float, the other is
converted into float.

3. Otherwise, if one of the operands is long, the other is
converted into long.

4. Otherwise, both operands are converted into int.

Augmented Assignment Operators

UC. Colorado Springs CS1150

• +, -, *, / and % operators
o Each can be combined with the assignment operator (=)

o a = a + 1; => a += 1;

o Same as -=, *=, /= and %=

Increment and Decrement Operators

UC. Colorado Springs CS4500/5500

• Increment: ++ Decrement: --
o Operator can be placed before or after variables (postfix)

int i = 1, j = 3;

i++; // Same as i = i + 1; i will become 2

j--; // Same as j = j – 1; j will become 2

o Alternatively (prefix)
int i = 1, j = 3;

++i; // Same as i = i + 1; i will become 2

--j; // Same as j = j – 1; j will become 2

Order of Operators (Section 3.15)

UC. Colorado Springs CS1150

• Anything in parentheses

• expr++ expr-- (postfix)
• + - ++expr --expr (unary plus/minus, prefix)

• (type) (Casting)

• ! (not)
• * / % (multiplication, division, remainder)

• + - (binary addition, subtraction)

• < <= > >= (relational operators)
• == != (equality)

• ^ (exclusive or)

• && (and)
• || (or)

• = += -= *= /= %= (assignment, augmented assignment)

If statement

UC. Colorado Springs CS1150

• The else clause matches the most recent if
clause

• An ”else" always belongs with the most
recent if

If statement

UC. Colorado Springs CS1150

To force the else clause to match the first if
clause, must add a pair of braces:
int i = 1, j = 2, k = 3;

if (i > j) {

if (i > k)

System.out.println("A");

}

else

System.out.println("B");

switch Statement Notes

UC. Colorado Springs CS4500/5500

• switch expression
o Must evaluate to a value of type char, byte, short, int

} switch (x > 1) // Not allowed - evaluates to a boolean value

} switch (x == 2) // Not allowed - another boolean expression

switch Statement Notes

UC. Colorado Springs CS4500/5500

• Case values
o Are constants expressions
o Cannot contain variables

} case 0: system.out.println("......"); // valid
} case (x+1): system.out.println("...."); // not valid

o Though this is valid way to write the cases
int value = 3;
switch (value) {

case 1:case 2:case 3: System.out.println("case 1, 2, and 3"); break;
case 4: System.out.println("case 4"); break;
default: System.out.println("default");

}

switch Statement Notes

UC. Colorado Springs CS4500/5500

• break statement
int day = 3;
switch (day) {

case 1:
case 2:
case 3:
case 4:
case 5: System.out.println("Weekday"); break;
case 0:
case 6: System.out.println("Weekend");

}

Conditional Expressions

UC. Colorado Springs CS1150

• Shortcut way to write a two-way if statement
(if-else)
o Consists of the symbols ? and : (aka the "ternary" operator)

o result = expression ? value1 : value2
} expression can be either a boolean value or a statement that

evaluates to a boolean value

} The conditional "expression" is evaluated

} If the expression is true, value1 is returned

} If the expression is false, value2 is returned

Rules for While/Do..while Loops

UC. Colorado Springs

• The loop condition must be a boolean expression
o Boolean expression must be in parentheses
o Boolean expressions are formed using relational or logical operators

• Loop condition
o Usually a statement before the while loop "initializes" the loop condition to true
o Some statement within the loop body eventually change the condition to false

• If the condition is never changed to false, the program is
forever in the loop
o This is called an "infinite loop"

• Curly braces are not necessary if only one statement in loop
o But best practice is to always include curly braces

Rules of for loops

UC. Colorado Springs

• The control structure of the for-loop needs to be in
parentheses
o for (i=0; i<= 2; i++) { statements; }

• The loop condition (i <= 2) must be a boolean
expression

• The control variable (i): not recommended to be
changed within the for-loop body

• Curly braces are not necessary if only one statement in
loop
o Best practice is to always include curly braces

Using break and continue

UC. Colorado Springs

• Break in loops
o Used "break" in switch statements to end a case

o Can be used in a loop to terminate a loop

o Breaks out of loop

• Continue in loops
o Used to end current iteration of loop

o Program control goes to end of loop body

Note

UC. Colorado Springs

• You may declare the control variable outside/within the for-loop
for (int j = 0; j <= 5; j++) {

System.out.println ("For loop iteration = " + j);

}

int j;
for (j = 0; j <= 5; j++) {

System.out.println ("For loop iteration = " + j);

}

• Note on variable scope (the area a variable can be referenced)
o Declaring control variable before the for loop cause its scope to be inside and outside for-

loop
o Declaring the control variable in the for-loop causes its scope to be only inside the for loop

} If I tried to use the variable j outside the for-loop - error

Note

UC. Colorado Springs

• Mistakes to avoid
o Infinite loops

o Off-by-one error

• Nested loops
o Know how to trace them

25

The Math Class
• Class constants:

o PI (3.14159…)

o E (2.71828…base of natual log)

• Class methods:
o Trigonometric Methods

o Exponent Methods

o Rounding Methods

o min, max, abs, and random Methods

Random Numbers

UC. Colorado Springs

• Math.random()
o How to generate a random integer between [lower, upper)?

} Example: int lower=100, upper=120;

} randomDouble = Math.random(); // [0.0, 1.0)

} randomDouble = randomDouble * (upper-lower); // [0.0, 20.0)

} randomDouble = lower + randomDouble; // [100.0, 120.0)

} randomInt = (int) randomDouble; // cast double à int

o Or in one step
} randomInt = (int) (lower + Math.random() * (upper-lower));

Character Data Type

UC. Colorado Springs CS1150

• Values: one single character
o Use single quote ‘’ to represent a character (doubles

quotes “” are for Strings)
} char middleInitial = 'M';

} char numCharacter = '4'; // Assigns digit character 4 to numCharacter

} System.out.println(numCharacter); // Displays 4

o Placing a character in “” it is no longer a char: it is a
String
} char middleInitial = "M"; // Error - cannot convert String to char

28

ASCII Code for Commonly Used Characters

Characters Code Value in Decimal Unicode Value

'0' to '9' 48 to 57 \u0030 to \u0039
'A' to 'Z' 65 to 90 \u0041 to \u005A
'a' to 'z' 97 to 122 \u0061 to \u007A

More information: http://kunststube.net/encoding/

http://kunststube.net/encoding/

29

Casting between char and Numeric Types
int i = 'a'; // Same as int i = (int)'a';

System.out.println (”i = " + i); // i = 97

char c = 97; // Same as char c = (char)97;

System.out.println ("c = " + c); // c = a

Increment and decrement can be used on char variables to get the
next or preceding ASCII/Unicode character.

char ch = 'a';
System.out.println(++ch); //shows character b

all numeric operators can be applied to the char operands

30

Comparing and Testing Characters

if (ch >= 'A' && ch <= 'Z')
System.out.println(ch + " is an uppercase letter");

else if (ch >= 'a' && ch <= 'z')
System.out.println(ch + " is a lowercase letter");

else if (ch >= '0' && ch <= '9')
System.out.println(ch + " is a numeric character");

all numeric operators can be applied to the char operands

How to generate a random character?

UC. Colorado Springs

• A random character between any two
characters ch1 and ch2 with ch1 < ch2 can be
generated as:
o (char)(ch1 + Math.random() * (ch2 – ch1 + 1))

o Example: random upper case letter
} (char)(‘A’ + Math.random() * (‘Z’– ‘A’ + 1))

o Example: random numeric character
} (char)(‘0’ + Math.random() * (‘9’– ‘0’ + 1))

How to convert a numeric int character to
its int value?

UC. Colorado Springs

• Converting ‘0’ to 0, etc.

• Example: how to convert ‘0’ to 0?
o ‘0’ - ‘0’ is 0

o ‘1’ - ‘0’ is 1

o ‘2’ - ‘0’ is 2

o …...

The String Type

UC. Colorado Springs CS1150

• A char is in single quotes and a String is in
double quotes
o char middleInitial = "M"; // Error - can’t convert String to char

o char middleInitial = 'M'; // Correct

o string studentName = "Max" // Error - uppercase "String"

o String studentName = 'Max'; // Error - double quotes

o String studentName = "Max"; // Correct

Strings and chars

UC. Colorado Springs

• String methods (length, get char from String)

• Read Strings/chars from console

• Concatenate/compare Strings

• Converting between numbers and Strings

• Finding substrings

• Formatting output (%s, %d etc.)

Rules for Methods

UC. Colorado Springs

• A method may or may not return a value
• A method must declare a return type!

o If a method returns a value
} Return type is the data type of the value being returned

} The return statement is used to return the value

o If a method does not return a value
} Return type in this case is void

} No return statement is needed (look at max no return example)

• The values you pass in must match the order and
type of the parameters declared in the method

Overloading Methods -- Rules

UC. Colorado Springs

• To be considered an overloaded method
o Name - must be the same
o Return type - can be different - but you cannot change only the return type
o Formal parameters - must be different

• Java will determine which method to call based on the
parameter list
o Sometimes there could be several possibilities
o Complier will pick the "best match"

• It is possible that the methods are written in way that the
complier cannot decide best match
o This is called ambiguous invocation
o This results in an error

37

Scope of Local Variables
• A local variable: a variable defined inside a

method/block

• Scope: the part of the program where the
variable can be referenced

• The scope of a local variable starts from its
declaration and continues to the end of
the block that contains the variable
o A local variable must be declared before it can be

used.

38

Scope of Local Variables, cont.

• Can declare a local variable with the same
name multiple times in different non-
nesting blocks in a method

• Cannot declare a local variable twice in
nested blocks

• Formal parameters are considered local
variables

39

Creating Arrays
Cannot do anything with an array variable until after the

array has been constructed with the new operator:

arrayRefVar = new datatype[arraySize];

Example:
myList = new double[10]; //use new to give a size

//allocate memory for array

myList[0] references the first element in the array.

myList[9] references the last element in the array.

(1) creates an array with 10
double (i.e. it allocates memory)

(2) assigns the reference of the
array to the variable myList

Accessing arrays

UC. Colorado Springs

• For loops generally used with arrays since we know how
many times the loop will occur
o Example: assign the numbers 0 to 4 to numberList

// Assign the numbers 0 to 4 to numberList array

int[] numberList = new int[5];

for (int i = 0; i < 5; i++) {

numberList[i] = i;

System.out.println("numberList[" + i + "] = " + numberList[i]);

}

• Trying to access an element outside the range of an
array it is an error

41

Processing Arrays

1. (Initializing arrays with input values)

2. (Initializing arrays with random values)

3. (Printing arrays)

4. (Summing all elements)

5. (Finding the largest element)

6. (Finding the smallest index of the largest element)

7. (Random shuffling)

8. (Shifting elements)

42

Copying Arrays
Often, in a program, you need to duplicate an array or a part of an
array. In such cases you could attempt to use the assignment
statement (=), as follows:

list2 = list1;

43

Copying Arrays

Using a loop:

int[] sourceArray = {2, 3, 1, 5, 10};

int[] targetArray = new

int[sourceArray.length];

for (int i = 0; i < sourceArrays.length; i++)

targetArray[i] = sourceArray[i];

44

Passing Arrays to Methods
public static void printArray(int[] array) {
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");

}
}

Invoke the method

int[] list = {3, 1, 2, 6, 4, 2};
printArray(list);

Invoke the method
printArray(new int[]{3, 1, 2, 6, 4, 2});

Anonymous array

45

Pass By Value
Java uses pass by value to pass arguments to a method. There
are important differences between passing a value of variables
of primitive data types and passing arrays.

• For a parameter of a primitive type value, the actual value is
passed. Changing the value of the local parameter inside the
method does not affect the value of the variable outside the
method.

• For a parameter of an array type, the value of the parameter
contains a reference to an array; this reference is passed to the
method. Any changes to the array that occur inside the method
body will affect the original array that was passed as the
argument.

46

Searching Arrays

 public class LinearSearch {
 /** The method for finding a key in the list */
 public static int linearSearch(int[] list, int key) {
 for (int i = 0; i < list.length; i++)
 if (key == list[i])
 return i;
 return -1;
 }
}

 list

key Compare key with list[i] for i = 0, 1, …

 [0] [1] [2] …

Searching is the process of looking for a specific element in
an array; for example, discovering whether a certain score is
included in a list of scores. Searching is a common task in
computer programming. There are many algorithms and
data structures devoted to searching. In this section, two
commonly used approaches are discussed, linear search
and binary search.

47

Sorting Arrays

Sorting, like searching, is also a common task in
computer programming. Many different algorithms
have been developed for sorting. This section
introduces a simple, intuitive sorting algorithms:
selection sort.

Object state and behavior

UC. Colorado Springs

• An object has two important pieces: state and
behavior
• State

o The properties (data fields) that define an object: things an object
knows!

o A "dog" object may have properties such as color, size, gender,
etc.

• Behavior
o The methods that define an object: things an object does!
o A "dog" object may have behaviors such as sleep, fetch, rollover,

bark, sit, etc.

49

Classes

Classes are constructs that define objects of the
same type.

A Java class uses variables to define data fields and
methods to define behaviors.

Additionally, a class provides a special type of
methods, known as constructors, which are
invoked to construct objects from the class.

50

Constructors, cont.
A constructor with no parameters is referred to as a
no-arg constructor.

· Constructors must have the same name as the
class itself.

· Constructors do not have a return type—not
even void.

· Constructors are invoked using the new
operator when an object is created. Constructors
play the role of initializing objects.

Constructors cont.

UC. Colorado Springs

• A constructor can be overloaded
o public StudentD (){

}
o public StudentD (String lastName, String firstName){

this.lastName = lastName;
this.firstName = firstName;

}
o public StudentD (int ID, int level){

this.studentID = ID;
this.academicLevel = level;

}

52

Accessing Object’s Members

qReferencing the object’s properties (array’s length):

objectRefVar.data

e.g., myCircle.radius

qInvoking the object’s method (String’s length()):

objectRefVar.methodName(arguments)

e.g., myCircle.getArea()

53

Static Variables, Constants, and
Methods

Static variables are shared by all the instances of the
class. Static constants are final variables shared by
all the instances of the class.

Static methods are not tied to a specific object.

To declare static variables, constants, and methods,
use the static modifier.

54

The this Keyword

qThe this keyword is the name of a reference
that refers to an object itself. One common use
of the this keyword is reference a class’s hidden
data fields.

qAnother common use of the this keyword to
enable a constructor to invoke another
constructor of the same class.

55

Calling Overloaded Constructor

public class Circle {
 private double radius;

 public Circle(double radius) {
 this.radius = radius;
 }

 public Circle() {
 this(1.0);
 }

 public double getArea() {
 return this.radius * this.radius * Math.PI;
 }
}

Every instance variable be longs to an instance represented by this,
which is normally omitted

this must be explicitly used to reference the data
field radius of the obje ct being constructed

this is used to invoke another constructor

56

Scope of Variables

qThe scope of instance and static variables is the
entire class. They can be declared anywhere inside
a class.

qThe scope of a local variable starts from its
declaration and continues to the end of the block
that contains the variable. A local variable must be
initialized explicitly before it can be used.

57

Visibility Modifiers

By default, a class, variable, or method can be
accessed by any class in the same package.

q public

The class, data, or method is visible to any class in any
package.

q private

The data or methods can be accessed only by the declaring
class.

The getter and setter methods are used to read and modify
private properties.

Inheritance

UC. Colorado Springs

• When the definition of a class is based on an
existing class (called the superclass)

• The class that is inheriting (subclass) can use
accessible date fields and methods from
superclass

59

Using the Keyword super

• To call a superclass constructor: super()
• To call a superclass method: super.method()

The keyword super refers to the superclass
of the class in which super appears.

This keyword can be used in two ways:

60

Superclasses and Subclasses

StudentI
-lastName/firstName: String
-age: int

-academiclevel: int

+StudentI()
+StudentI(last: String, first: String)
+toString(): String

CCStudentI
-campus: String

UCCSStudentI
-campus: String
-UCCSID: int
-lastUCCSID: int

+UCCSStudentI()

+UCCSStudentI (last:String,first:String)
+toString(): String
+getUCCSID(): int
+getCampus(): String

CTechStudentI
-campus: String

Example:
StudentApp9.java

Properties and methods
are inherited

Overriding vs. Overloading

UC. Colorado Springs

• Overloading
o We discussed overloading in methods chapter

o Two or more methods with the same name but different formal
parameters

o The methods could be in the same class or in different classes
related by inheritance

• Overriding
o Occurs when dealing with inheritance

o A method defined in the subclass that matches the signature and
return type of the method defined in superclass

Good Luck!!

UC. Colorado Springs

