Mixes

Yanyan Zhuang

Department of Computer Science http://www.cs.uccs.edu/~yzhuang/

1

Chaum Mixes / Mix Networks

- Originally designed for anonymous email
 - David Chaum, 1981
 - Concept has since been generalized for TCP traffic
- Hugely influential ideas
 - Onion routing
 - Traffic mixing
 - Dummy traffic (a.k.a. cover traffic)

Basic Notations

- Public key K
 - Private key K⁻¹
- Encryption of X: K(X)
 - Private key does the reverse K⁻¹(K(X))=X
- Signature
 - Large constant C, the owner of K^{-1} does $K^{-1}(C, X) = Y$
 - \circ Everybody else can verify: K(K⁻¹(C, X))=C, X, i.e., Y has been signed by the holder of K⁻¹
- Use a random number R before encrypting
 - K(R, X)
 - Prevent guessing of X=Y by checking K(X) = K(Y)

How It Works (1)

- Participant X wants to send a message M to Y
 - a. X prepares a message for delivery to Y by appending a random value R0 to the message \rightarrow (R0, M)
 - b. X seals it with the Y's public key Ky, appends Y's address Ay \rightarrow Ky(R0, M), Ay
 - c. X seals the result with the mix's public key K1, appending another R1 \rightarrow K1(R1, **Ky(R0, M)**, **Ay**)
- Mix opens it with his private key K1⁻¹
 - a. Gets Ky(R0, M), Ay
 - b. Mix now knows Y's address Ay, and he sends Ky(R0, M) to Y

How It Works (2)

• K1(**R1**, Ky(**R0**, M), Ay)

- R1 is needed to prevent replay attack from X to mix
 - Mix opens K1(R1, Ky(R0, M), Ay) with its private key
 - Will only accept different R1's each time
- R0 is needed to prevent an attacker from guessing messages
 - Assume attacker can observe all incoming and outgoing messages
 - If R0 is not used (i.e. only Ky(M) is sent to Y), the attacker can test whether Ky(M')=Ky(M) is true

How It Works: Cascade

- A cascade of mixes Mn, Mn-1, Mn-2...
 - X sends
 - Kn(Rn, Kn-1(Rn-1, ..., K2(R2, K1(R1, Ky(R0, M), Ay))...))
 - The first mix Mn encrypts and gets
 - Kn-1(Rn-1, ..., K2(R2, K1(R1, Ky(R0, M), Ay))...)

$$\textcircled{}$$

The Other Way Round?

- Return traffic: how can the destination respond to the sender?
 - Mix only sends Ky(R0, M) to Y
 - For Y to respond to X while still keeping the identity of X secret from Y
- Solution: During path establishment, the sender places keys at each mix along the path

Return Traffic (1)

• X forms an untraceable return address K1(S1, Ax), Kx

- **S1** is a key that will also act as a random string for purposes of sealing
- Ax is X's own real address
- **Kx** is a public one-time key chosen for the current occasion only
- X sends this return address to Y as part of the message sent
- Originally, $X \rightarrow Y$: K1(R1, Ky(R0, M), Ay)
 - Mix sends Ky(R0, M) to Y
- With the untraceable return address, X → Y: K1(R1, Ky(R0, M, K1(S1, Ax), Kx), Ay)
 - Mix opens with its private key, gets Ky(R0, M, **K1(S1, Ax), Kx**), Ay
 - Mix sends Ky(R0, M, K1(S1, Ax), Kx) to Y

Return Traffic (2)

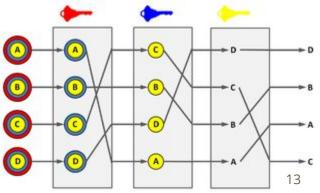
- Continue with previous...
 - Mix sends Ky(R0, M, K1(S1, Ax), Kx) to Y
- Y opens and gets M, K1(S1, Ax), Kx
 - Remember that Kx is a public one-time key chosen for the current occasion only

Return Traffic (3)

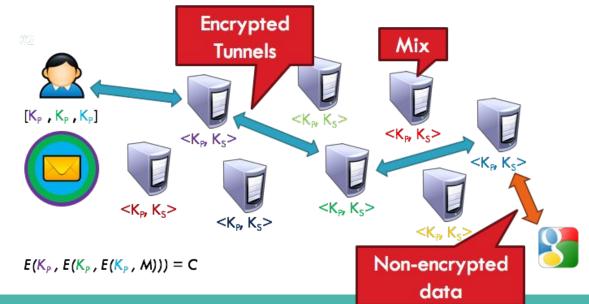
- Continue with previous...
 - Mix sends Ky(R0, M, K1(S1, Ax), Kx) to Y
- Y opens and gets M, K1(S1, Ax), Kx
 - Remember that Kx is a public one-time key chosen for the current occasion only
- Y sends K1(S1, Ax), Kx(S0, M') to mix
 - M' is the response message, S0 is a random string
 - Mix transforms it to Ax, S1(Kx(S0,M'))
 - Mix uses S1 that it finds after decrypting K1(S1, Ax) as a key to re-encrypt the message part Kx(S0, M')
 - Mix sends S1(Kx(S0,M')) to X
 - Only X can decrypt the resulting output S1(Kx(S0,M')): X created both S1 and Kx
 - Kx assures that the mix cannot see the content of the reply-message

Election

- If registered voters are accepted for a roster
- For a single mix, each voter submits a ballot of the form K1(R1, K, K⁻¹(C, V))
 - \circ $\,$ K is the voter's pseudonym and V is the actual vote
 - K1 is mix's public key
- Items in the final output batch are of the form K, K⁻¹(C, V)
- Each ballot is counted
 - Checking that the pseudonym K which forms its prefix, is also contained in the roster
 - The pseudonym properly decrypts the signed vote V


Traffic Mixing

- Hinders timing attacks
 - Messages may be artificially delayed 0
 - Temporal correlation is warped Ο
- Problems
 - Requires lots of traffic Ο
 - Adds latency to network flows Ο


Putting it together (1)

- Routing protocols that create hard-to-trace communications
 - Using a chain of proxy servers known as mixes
 - A mix takes in messages from multiple senders, shuffle them, and send them back out in random order to the next destination (possibly another mix)
 - Breaks the link between source/destination, making it harder for eavesdroppers to trace end-to-end communications
 - A mix only knows the node that it immediately received the message from, and the immediate destination to send the shuffled messages to
 - Resistant to malicious mix nodes

Putting it together (2)

- Each message is encrypted to each proxy using public key cryptography
 - Encryption is layered like a Russian doll (except that each "doll" is of the same size) with the message as the innermost layer
 - Each mix strips off its own layer of encryption to reveal where to send the message next

