CS5530 Mobile/Wireless Systems Introduction

Yanyan Zhuang

Department of Computer Science

http://www.cs.uccs.edu/~yzhuang

UC. Colorado Springs

Ref. CN5E, NT@UW

Intro of Intro

Yanyan Zhuang

- PhD in network systems
- yzhuang@uccs.edu
- Office hours
 - M/W: an hour after class
 - F: 11am 12pm
- Blackboard: announcement, schedules

Outline

- Why study mobile/wireless systems?
- What will you learn?
- Lectures, Assignments, Projects, Exams
- Course policy
- Overview

Why study mobile/wireless systems?

- Where does Internet come from?
 - ∘ Computer center \rightarrow Computer networks \rightarrow Internet
- Wireless
 - Mobility, flexibility

What will you learn?

- How do wireless networks work?
 - WiFi, cellular, Bluetooth, etc.
 - o No heavy math!
- How to program on end-user devices?
 - iOS
 - Android

Lectures, Assignments, Project, Exams

- Lectures
 - Monday and Wednesday 4:45PM 6:00 PM
 - ENGR 138
- Assignments (individual)
 - iOS/Android programming assignments
- Research project (individual or in groups)
 - Choose a topic that interests you, talk to me before you start
- Midterm and Final (online, open-book, limited time)
 - Midterm TBD, mid/late March (take home)
 - Final: 5:20 7:20 pm, May 10 (in class) http://www.uccs.edu/Documents/cic/spring%202017/Final%20Exam%20Sc hedule.pdf

Course Policy

• Grading scale

Percentage	Grade
90 - 100	А
87 - 89	A-
84-86	B+
80 - 83	В
75 - 79	C+
70 - 74	С
65 - 69	D+
60 - 64	D
Below 60	F

Course Policy (cont.)

- Grading percentage
 - Assignments: 40%
 - Research project: 20%
 - Midterm: 20%
 - Final exam: 20%

Where to get help?

- Q&A in class
- Office hours
 - M/W one hour after class 6-7pm
 - F: 11:00am -- 12:00pm
 - By appointment
 - ENGR 184

Overview

What is a Wireless Network

- First, what is a network?
 - Computer networks
 - A large number of separate but interconnected computers
 - The connection: via a copper wire, fiber optics, microwaves, infrared, satellites, and so on
 - Internet
 - The most well-known network of networks

Where did Internet come from?

- ARPANET (1966-1967): Advanced Research Projects Agency Network
 - Funded by Advanced Research Projects Agency (ARPA) of United States Department of Defense
- Goal: network academic computers (UCLA, SRI, UCSB, Utah -- first nodes in 1969)
- 1971: ~20 ARPANET nodes

Where did Internet come from?

Rough sketch: late 1960s

ARPANET LOGICAL MAP, MARCH 1977

1970s to 1980s: ARPANET transitioned to TCP/IP

Growth of Internet Hosts

What is a Wireless Network (cont.)

- Use of networks
 - Business, home use
 - Mobile users
 - People on the go want to do all things they do at home and in office
 - Mobile connectivity
 - □ Cellular, WiFi (IEEE 802.11)
 - Different mobile systems
 - Smartphones/tablets/smart watch
 - □ GPS
 - □ RFID (Radio-Frequency IDentification)

What is a Wireless Network (cont.)

Some other wireless networks

Sensor networks

- Made up of nodes that gather and wirelessly relay information they sense about the state of the physical world
- > The nodes may be cars or phones, or may be separate devices
 - Car's OBD sensors
 - □ Separate devices

 accelerometers, barometers, ocean bottom seismometers, pressure recorders and hydrophone

Network Reference Model

- A four layer model based on experience
 - 4 Application
 - 3 Transport
 - 2 Internet
 - 1 Link

- Programs that use network service
- Provides end-to-end data delivery
- Send packets over multiple networks
- Send frames over a link

Network Reference Model (cont.)

• A four layer model based on experience

LAN and WLAN

Wireless router / Base station

The standard for wireless LANs is called **IEEE 802.11**, popularly known as **WiFi**

Wireless vs. Wired

Link layer

- Medium: open air
- No wiring required
- Less secure than wired networks
 - It's a lot more difficult for unauthorized eavesdroppers and other snoops to monitor data in a wired network

Wireless vs. Wired

- Advantage
 - Allows mobility
 - Much cheaper and easier to deploy, change, and upgrade

Disadvantage

- Exposed (unshielded) medium
 - Susceptible to physical phenomena (interference)
 - More errors
- Slower data rates for longer distances
- Security: anyone in range hears transmission

Wireless Standards

- Cellular
 - 2G: GSM, CDMA
 - 3G: CDMA2000, WCDMA, TD-SCDMA
 - 4G/5G/LTE
- IEEE 802.11
 - a: 5.0Ghz band, 54Mbps (25 Mbps operating rate)
 - b: 2.4Ghz band, 11Mbps (4.5 Mbps operating rate)
 - og: 2.4Ghz, 54Mbps (19 Mbps operating rate)
 - Other versions (802.11n, p, etc.)
- IEEE 802.15: low powered wireless
 - 802.15.1: 2.4Ghz, 2.1 Mbps (Bluetooth)
 - 802.15.4: 2.4Ghz, 250 Kbps (Sensor Networks)

Wireless Link Characteristics

Wireless Transmission Range

A Wireless Link?

A Wireless Link!

Some other issues

• Hidden terminals

- A and C can both send to B but can't hear each other
 - A is a hidden terminal for C and vice versa

Some other issues (cont.)

• Exposed terminals

 Exposed node: B sends a packet to A; C hears this and decides not to send a packet to D (despite that this will not cause interference)

Summary

- What is a network
- Different kinds of wireless networks
- Wireless standards
- Issues with wireless networks