CS5530 Mobile/Wireless Systems Medium Access Control (MAC)

Yanyan Zhuang

Department of Computer Science

http://www.cs.uccs.edu/~yzhuang

UC. Colorado Springs

Ref. CN5E, NT@UW, WUSTL

Outline

- Access links
- Access control
- Channel allocation
 - Static allocation
 - Dynamic allocation
- Carrier sense protocols

Access Links

- Point-to-point links
 - Easy coordination
- Broadcast links
 - More than two stations transmit at the same time: collision
 - Challenge: determine who gets to use the channel when there is competition

(a) Point-to-point

(b) Multipoint-broadcast network

CS5530

Access Control

Access control

- Ensure only one station transmits
- Ensure no collision occur

• MAC (Medium Access Control)

- The protocols used to determine who goes next on a broadcast channel
- Above physical layer, below IP layer

- How to allocate a single broadcast channel among competing users
- Static Channel Allocation
 - FDM (Frequency Division Multiplexing)
 - Divides spectrum into frequency bands, with each user having exclusive possession of some band to send their signal

- How to allocate a single broadcast channel among competing users
- Static Channel Allocation
 - FDM (Frequency Division Multiplexing)
 - TDM (Time Division Multiplexing)
 - Users take turns (round-robin), each one periodically getting entire bandwidth for a little burst of time

- How to allocate a single broadcast channel among competing users
- Static Channel Allocation
 - FDM (Frequency Division Multiplexing)
 - TDM (Time Division Multiplexing)
 - Advantage/disadvantage
 - A small and constant # of users, each has a steady stream of traffic, static allocation is simple and efficient
 - When # of senders is large and varying or the traffic is bursty: inefficient

- How to allocate a single broadcast channel among competing users
- Static Channel Allocation
- Dynamic Channel Allocation
 - No base station/central entity involved, purely distributed

- Aloha
 - Seminal computer network
 connecting Hawaiian islands in late 1960s
 - When should nodes send?
 - A new protocol was devised by Norm Abramson

- Aloha
 - Seminal computer network

connecting Hawaiian islands in late 1960s

- When should nodes send?
- A new protocol was devised by Norm Abramson
- Simple idea
 - Node just sends when it has traffic (no carrier sensing)
 - If there was a collision (no ACK received) then wait a random time (called backoff time) and resend

Aloha

• Pure Aloha

- Stations transmit at any time
- For analysis, assume same length
- Vulnerable time: 2T

Aloha

Slotted Aloha

Stations transmit only in a slot

- Aloha's low efficiency
 - Stations transmit at will, without knowing what others are doing
 → many collisions
- (W)LANs
 - Possible for stations to detect what others are doing, and thus adapt their behavior accordingly
- Carrier Sense Multiple Access (CSMA) Protocols
 - Protocols in which stations listen for a carrier (i.e., a transmission) and act accordingly

- ALOHA inspired Bob Metcalfe to invent Ethernet for LANs in 1973
 - Nodes share 10 Mbps coaxial cable
 - Hugely popular in 1980s, 1990s

: © 2009 IEEE

- CSMA improves ALOHA by listening before send (Doh!)
 - Can do easily with wires, not wireless
- 1-persistent CSMA
 - A station has data to send: listens to the channel
 - If channel is idle, station sends data
 - If channel is busy, station waits until idle, then transmits a frame
 - If a collision occurs, station waits a random time and starts all over

- Still possible to listen and hear nothing when another node is sending because of **delay**
 - Just after a station begins sending, another station becomes ready to send and sense the channel
 - If the first station's signal has not yet reached the second one, the latter will sense an idle channel and begin sending, resulting in a collision

 CSMA is a good defense against collisions only when delay is small

- p-persistent CSMA: applies to slotted channels
 - If channel is idle, it transmits with a probability p
 - ▶ With a probability q = 1 p, it defers until the next slot
 - If the station senses that the channel is busy, it waits until the next slot
 - If next slot is also idle, it either transmits or defers again, with probabilities p and q

- Reduce the cost of collisions by detecting them and aborting the rest of the frame time
 - Again, we can do this with wires

- Collision detection is an analog process
 - Hardware must listen to channel while it is transmitting
 - > If the signal it reads back is different from the signal it put out, then a collision is occurring
 - Implication: a received signal must **not** be tiny compared to the transmitted signal
 - Difficult for wireless, as received signals may be 1,000,000 times weaker than transmitted signals

- How does a station detect a collission? Minimum packet length
 - Tt: transmission time, time to transmit a packet out (decided by length and link bandwidth)
 - Tp: propagation time, time to transmit a packet to another station

- Minimum packet length
 - Assume Tp = 1 hour
 - Case 1 A and B transmit simultaneously
 - 10am stations A and B starts transmitting
 - 10:30am collision happens
 - 11am A and B receive collision signal
 - Case 2 A transmits before B
 - 10am A starts transmitting
 - > 10:59:59am B starts transmitting
 - 11am collision happens
 - 12pm A receives collision signal
 - In worst case, the time to detect a collision is 2*Tp

- Minimum packet length
 - In worst case, the time to detect a collision is 2*Tp
 - Detecting collision
 - Receive collision signal while transmitting
 - Tt >= 2*Tp, where Tt = Length (bits) /B (bits per sec)
 - Example: Tp = 1msec, B = 1Mbps, what's the minimum packet length for CSMA/CD?
 - Tt = Length/B >= 2*Tp. Length >= 2*Tp*B = 2*10^(-3)*10^6 = 2000 bits
 - What if a packet is shorter than 2000 bits? Padding
 - CSMA/CD used for Ethernet

- Should I resend right away?
- Binary Exponential Backoff (BEB): cleverly estimates probability
 - 1st collision, wait 0 or 1 frame times (0...2^1-1)
 - 2nd collision, wait from 0 to 3 times (0...2^2-1)
 - 3rd collision, wait from 0 to 7 times (0...2^3-1) ...
- BEB doubles interval for each successive collision
 - Quickly gets large enough to work
 - Very efficient in practice

Classic Ethernet, or IEEE 802.3

- Most popular LAN of the 1980s, 1990s
 - Multiple access with "1-persistent CSMA/CD with BEB"

Wireless LAN Protocols

- Different from Ethernet
 - A wireless system cannot detect a collision while it is occurring
 - > The received signal at a station may be a million times weaker than transmitted signal
 - A station on a wireless LAN may not be able to transmit frames to, or receive frames from all other stations because of the limited range
 - In wired LANs, when one station sends a frame, all other stations receive it (with some delay)

• A naive approach

- Try CSMA: just listen for other transmissions and only transmit if no one else is doing so
- What's the problem?

Wireless LAN Protocols

Remember hidden terminals and exposed terminals?

- Nodes may have different areas of coverage doesn't fit Carrier Sense
- 2. Nodes can't hear while sending can't Collision Detect

MACA (Multiple Access with Collision Avoidance)

- MACA uses a short handshake instead of CSMA (Karn, 1990)
 - 802.11 uses a refinement of MACA
- Protocol rules:
 - A sender node transmits a RTS (Request-To-Send, with frame length)
 - 2. The receiver replies with a CTS (Clear-To-Send, with frame length)
 - Sender transmits the frame while other nodes hearing the CTS stay silent
 - □ Collisions on the RTS/CTS are still possible, but less likely

MACA – Hidden Terminals (1)

- $A \rightarrow B$ with hidden terminal C
 - 1. A sends RTS, to B

MACA – Hidden Terminals (2)

- $A \rightarrow B$ with hidden terminal C
 - 2. B sends CTS, to A, and C too

MACA – Hidden Terminals (3)

- $A \rightarrow B$ with hidden terminal C
 - 3. A sends frame while C defers

D

MACA – Exposed Terminals (1)

- $B \rightarrow A, C \rightarrow D$ as exposed terminals
 - B and C send RTS to A and D

MACA – Exposed Terminals (2)

- $B \rightarrow A, C \rightarrow D$ as exposed terminals
 - $_{\rm o}~$ A and D send CTS to B and C

MACA – Exposed Terminals (3)

- $B \rightarrow A, C \rightarrow D$ as exposed terminals
 - B sends frame to A while C sends frame to D

802.11, or WiFi

- Very popular wireless LAN started in the 1990s
- Clients get connectivity from a (wired) AP (Access Point)
- It's a multi-access problem ^(C)
- Various flavors have been developed over time
 - Faster, more features

802.11, or WiFi

- 802.11 MAC sublayer protocol different from that of Ethernet
 - Radios are nearly always half duplex: cannot transmit and listen for collision at the same time
 - Transmission ranges of different stations may be different
 - With a wire, the system is engineered so that all stations can hear each other
- 802.11 tries to avoid collisions with a protocol called CSMA/CA (CSMA with Collision Avoidance)
 - Conceptually similar to Ethernet's CSMA/CD, with channel sensing before sending and exponential back off after collisions

- A station that has a frame to send starts with a random backoff
 - It does not wait for a collision
 - The number of slots to backoff is chosen in the range 0 to, say, 15
- Waits until the channel is idle, and counts down idle slots
 - Idle: by sensing that there is no signal for a short period of time
 - Count down pauses when frames are sent by other stations
 - Sends its frame when the counter reaches 0
- If frame gets through, destination sends a short ack
 - Lack of an ack is inferred as an error, whether a collision or otherwise
 - The sender doubles the backoff period and tries again
 - Continues with exponential backoff until (1) the frame has been successfully transmitted, or (2) the maximum # of retransmissions has been reached

- Station A is the first to send a frame to D
- While A is sending, stations B and C become ready to send
 - They see that the channel is busy and wait for it to become idle 0
 - Shortly after A receives an acknowledgement, the channel goes idle 0
 - Rather than sending a frame right away and colliding, B and C both perform a backoff 0

- While A is sending, stations B and C become ready to send
 - C picks a short backoff, and thus sends first
 - B pauses its countdown while it senses that C is using the channel, and resumes after C has received an acknowledgement
 - B then completes its backoff and sends its frame

- Difference compared to CSMA/CD
 - Starting backoffs early helps to avoid collisions
 - This avoidance is worthwhile because collisions are expensive, as the entire frame is transmitted even if one occurs
 - Acknowledgements are used to infer collisions because collisions cannot be detected

- Association service
 - Mobile stations connect to APs
 - Typically used after a station moves in radio range of an AP
 - Upon arrival, station learns the identity and capabilities of the AP (from beacon frames or by directly asking AP)
 - Capabilities include data rates, security arrangements, power-saving capabilities, quality of service support, etc.
 - Station sends a request to associate with AP. The AP may accept or reject the request.

- Re-association
 - Lets a station change its preferred AP
 - Useful for mobile stations moving from one AP to another AP in the same extended 802.11 LAN

Disassociate

- Either station or AP may disassociate breaking the relationship
- A station uses this before shutting down or leaving the network
- AP may use it before going down for maintenance

- Authentication service
 - Stations must authenticate before sending frames via AP
 - Authentication is handled in different ways depending on the choice of security scheme
 - ▶ If the 802.11 network is "open," anyone is allowed to use it.
 - Otherwise, credentials are needed to authenticate

- Authentication service
 - Stations must authenticate before sending frames via AP
 - Authentication is handled in different ways depending on the choice of security scheme
 - ▶ If the 802.11 network is "open," anyone is allowed to use it.
 - Otherwise, credentials are needed to authenticate
 - WPA2 (WiFi Protected Access 2): AP talks to an authentication server that has a username and password database
 - WEP (Wired Equivalent Privacy): Use is discouraged because of design flaws that make WEP easy to compromise

- Distribution service
 - Once frames reach the AP, distribution service determines how to route them
 - > If destination is local to AP, frames sent out directly over the air
 - Otherwise, forwarded over the wired network
- Integration service
 - Handles translation needed for a frame to be sent outside 802.11 LAN, or to arrive from outside 802.11 LAN
 - > The common case: connecting the wireless LAN to the Internet

Privacy service

- For information sent over a wireless LAN to be kept confidential, it must be encrypted
- Manages details of encryption and decryption
 - The encryption algorithm for WPA2 is based on AES (Advanced Encryption Standard)

QoS traffic scheduling service

- Handles traffic with different priorities
 - Give voice and video traffic preferential treatment compared to besteffort and background traffic

802.11/WiFi Summary

- CSMA/CA
 - Cannot detect collision \rightarrow passively avoid instead
- Various WiFi services
 - Association, authentication, privacy, etc.
- Android

W	WiFi Scanner					
	🖌 Auto Sca	n every	5	sec	Scan Now	
C	Power Channel	S E	SSID BSSID		Encryption	
-!	58 dBm Ch: 2	1020655			Open!	
-(69 dBm Ch: 10	1000			WEP	
-7	77 dBm Ch: 6	518511 1271966				
-9	90 dBm Ch: 1			87911 575552	MPA	
-9	91 dBm Ch: 11	100				

Ref. CN5E, NT@UW, WUSTL

Bluetooth

- In 1994, the L. M. Ericsson company
 - Connecting mobile phones to other devices (e.g., laptops) without cables
 - With four other companies (IBM, Intel, Nokia, and Toshiba), formed a SIG (Special Interest Group, i.e., consortium) in 1998 to develop a wireless standard
 - Interconnecting computing and communication devices and accessories using short-range, low-power, inexpensive wireless radios
 - Named after Harald Blaatand (Bluetooth) II (940–981), a Viking king who unified Denmark and Norway

Bluetooth

- A brief history
 - Bluetooth 1.0 released in July 1999
 - Higher data rates were added to Bluetooth 2.0 in 2004
 - 3.0 release in 2009: device pairing in combination with 802.11
 - 4.0 release in December 2009 specified low-power operation
 - 5 release June 2016: IoT technology, 4x range, 2x speed, 8x
 increase in broadcasting capacity of low energy transmissions
- Bluetooth protocol
 - Let devices find and connect to each other, an act called pairing, and securely transfer data

Bluetooth Architecture

- Basic unit of a Bluetooth system is a piconet
 - Consists of a master node and up to seven active slave nodes
 - Older tech: within a distance of 10 meters

Bluetooth Architecture

- Multiple piconets can co-exist & connected via a bridge node in multiple piconets
 - An interconnected collection of piconets is called a

Ref. CN5E, NT@UW, WUSTL

Bluetooth Architecture

- A piconet is essentially a centralized TDM
 - Master controlling the clock and determining which device gets to communicate in which time slot
 - All communication is between the master and a slave; no direct slave-slave communication
- In a piconet, there can be up to 255 parked nodes
 - Devices switched to a low-power state to reduce battery drain
 - Cannot do anything except respond to an activation or beacon signal from master

Bluetooth Applications

- Bluetooth specifies particular applications and provides different protocol stacks
 - Applications are called profiles
- Audio and video
 - Intercom profile allows two telephones to connect as walkie-talkies
 - Headset and hands-free profiles provide voice
 communication between a headset and its base station
 - Used for hands-free telephony while driving a car

Bluetooth Applications

- Human interface device profile
 - For connecting keyboards and mice to computers
 - Let a mobile phone or other computer receive images from a camera or send images to a printer
 - Use a mobile phone as a remote control for a (Bluetooth-enabled) TV
- Generic access profile
 - On which all of the other profiles are built, provides a way to establish and maintain secure links between master and slaves

Bluetooth MAC Layers

- Has a link control layer, similar to MAC layer
- Master defines a series of 625-µsec time slots
 - Master's transmissions starting in even slots, slaves' transmissions in the odd ones (TDM)
 - Payload of frame can be encrypted for confidentiality with a key chosen when the master and slave connect

Bluetooth MAC Layers

- Link manager protocol
 - Pairing procedure: to make sure devices are allowed to communicate
 - Secure simple pairing enables users to confirm that both devices display the same passkey (device generated), or observe a passkey on one device and type it into the second device

Bluetooth MAC Layers

- Link manager protocol
 - Pairing procedure: to make sure devices are allowed to communicate
 - Link manager protocol sets up logical channels, called links
 - SCO (Synchronous Connection Oriented) link: used for real-time data, such as telephone connections, allocates a fixed slot in each direction
 - ACL (Asynchronous Connection-Less) link: used for packet-switched data (occur at irregular intervals), delivered on a best-effort basis – No guarantees

Bluetooth Summary

- Short range, low power
- Piconet, scatternet
 - Essentially TDM
- Application profiles
- Pairing, links

BluetoothScanning

Name : Compact Address : 00:22:58:6F:61:21

Name : Jelari Address : 80:6C:1B:0F:DB:42

Name : SUNDAR-LP Address : C4:85:08:89:07:1E

Name : Pollux 3 Address : 00:18:34:1D:1B:0A

Name : Pollux 3 Address : 00:18:34:1C:C5:08

Name : Compact Address : 00:22:58:6F:61:2F

RFID (Radio Frequency IDentification)

- NFC (Near Field Communication) and UHF (Ultra High Frequency)
- EPC (Electronic Product Code): focus of this section
 - Auto-ID Center at the Massachusetts Institute of Technology in 1999
 - Replacement for barcodes
 - Carry a larger amount of information
 - Electronically readable up to 10 m, even when it is not visible

RFID Architecture

- Two components: tags and readers
 - Tags are small, inexpensive devices
 - Have a unique 96-bit EPC identifier and a small amount of memory that can be read and written by reader
 - Memory might be used to record the location history of an item, e.g., as it moves through the supply chain
 - Have no battery and must gather power from transmissions of a nearby reader

Architecture

- Two key components: tags and readers
 - Readers are like access points in WiFi networks much more powerful than tags
 - Have power sources, multiple antennas
 - ▶ In charge of when tags send and receive messages
 - Must solve multiple access issue caused by tags within reading range
 - Inventory tags: to discover identifiers of nearby tags

- Harvest signal to get power
- To send data, a tag changes whether it is reflecting the signal from the reader or absorbing it: backscatter
 - A low-energy way for tags to create a weak signal that shows up at the reader

- To inventory nearby tags
 - Reader needs to receive data from each tag that gives its ID
 - A multiple access problem
 - Reader broadcasts a query to ask tags for IDs
 - Tags that replied right away would collide like in an Ethernet

- Slot 0
 - Reader sends a Query message
 - QRepeat advances to next slot

- Slot 0
 - Reader sends a Query message
 - QRepeat advances to next slot
-Slot 2
 - Tags pick slot 2 to reply
 - Tags do not send IDs when they first reply
 - Sends a short 16-bit random number in an RN16 message
 - ▶ If there is no collision, the reader sends an ACK message
 - The tag has acquired the slot and sends its identifier

- Message exchange
 - $_{\circ}$ IDs are long \rightarrow collisions on ID messages are expensive
 - A short exchange to test if tag can safely use the slot to send ID
 - Once ID has been transmitted, tag temporarily stops responding to Query messages
 - All remaining tags can be identified