
Ref.	CN5E,	NT@UW,	WUSTLCS5530

CS5530
Mobile/Wireless	Systems

Swift

Yanyan	Zhuang
Department	of	Computer	Science
http://www.cs.uccs.edu/~yzhuang

UC.	Colorado	Springs



cat	announce.txt_

Ref.	CN5E,	NT@UW,	WUSTL2CS5530

• iMacs	remote	VNC	access
o VNP:	http://www.uccs.edu/itservices/services/network-and-
internet/vpn.html

o VNC	password:	cs5530

o Please	save	data	to	Z

o Please	do	not	use	iMacs	in	Library

o IT	will	upgrade…	



Swift

Ref.	CN5E,	NT@UW,	WUSTL3CS5530

• What	is	it?
o A	new	programming	language	for	Apple	products

} iOS	(ipods,	iphones,	ipads,	etc.),	macOS,	watchOS,	tvOS,	future…

} Currently	at	version	3
¨ To	see	your	version:	xcrun swift	-version

¨ Apple	Swift	version	3.0.2	(swiftlang-800.0.63	clang-800.0.42.1)

} Open	source

o Based	on	Objective-C	and	C.
} Classes,	instances,	properties,	methods,	inheritance,	etc.



Swift

Ref.	CN5E,	NT@UW,	WUSTL4CS5530

o Requires	an	Apple	product	for	development
} Air,	MacBook,	MacBook	Pro,	iMac,	iTrashCan (MacPro)

o Requires	the	‘Xcode’	development	environment,	Apple	only.

o Resources	at:
} https://developer.apple.com/



Xcode Playground

Ref.	CN5E,	NT@UW,	WUSTL5CS5530

o An	interactive	work	environment	that	allows	you	update	
values	real-time	and	see	results.

o A	‘project’	option	in	Xcode.

o New	for	iPad	iOS	10!!!		



Xcode Playground

Ref.	CN5E,	NT@UW,	WUSTL6CS5530



Swift

Ref.	CN5E,	NT@UW,	WUSTL7CS5530

• Quick	overview	of	the	language
o Assignments

o Control	Flow

o Functions	and	Closures

o Objects	and	Classes

o Enumerations	and	Structures

o Protocols

o Error	Handling



Swift	- Overview

Ref.	CN5E,	NT@UW,	WUSTL8CS5530

• “Don’t	need	to	import	a	separate	library	for	
functionality	like	input/output	or	string	handling.	

• Code	written	at	global	scope	is	used	as	the	entry	
point	for	the	program,	so	you	don’t	need	main().	

• Don’t	need	to	write	semicolons	at	the	end	of	
every	statement.”	
• Excerpt	From:	Apple	Inc.	“The	Swift	Programming	Language	(Swift	3.0.1).”	iBooks.	

https://itun.es/ca/jEUH0.l



Swift	- Assignments

Ref.	CN5E,	NT@UW,	WUSTL9CS5530

o Types	can	be	‘inferred’

o Can	be	explicit

o NO	implicit	type	conversions
} Values	in	strings	by	using	a	“\”

let apples = 3

let applySummary = “I have \(apples) apples.”

Key	word Description

let Used	for	constants.		Does	not	need	to	be	known	at	compile	time	
but	must	be	assigned	a	value	exactly once.

var Used	for	variables.



Swift	- Assignments

Ref.	CN5E,	NT@UW,	WUSTL10CS5530

o Types	can	be	‘inferred’
o Can	be	explicit
o NO	implicit	type	conversions

} Values	in	strings	by	using	a	“\”
let apples = 3

let applySummary = “I have \(apples) apples.”

} Values	are	never	implicitly	converted	to	another	type.	If	need	to	convert	a	
value	to	a	different	type,	explicitly	make	an	instance	of	the	desired	type.	

“The	Swift	Programming	Language	(Swift	3.0.1).”

Key	word Description

let Used	for	constants.		Does	not	need	to	be	known	at	compile	time	
but	must	be	assigned	a	value	exactly once.

var Used	for	variables.



Swift	- Assignments

Ref.	CN5E,	NT@UW,	WUSTL11CS5530

• Assignments
o Dictionaries	and	arrays	use	[]

var shoppingList = [“hp”, “apple”, “microsoft”]

shoppingList[1] = “Lenovo”

var occupations = ["Malcolm": "Captain", "Kaylee": "Mechanic"]

occupations["Jayne"] = "Public Relations”

o Empty	arrays	or	dictionaries
let emptyArray = [String]()

Let emptyDictionary = [String: Float]()

If	type	information	can	be	inferred,	can	write	an	empty	array	as	[]	and	an	empty	dictionary	
as	[:]

• Data	Types
o Typical	data	types	available.

} String,	Float,	Double,	Bool,	Int/Uint,	Character,	Optional



Swift	– Control	Flow

Ref.	CN5E,	NT@UW,	WUSTL12CS5530

• For/if	example
o If	condition	must	be	explicit

o if	score	{..}	is	an	error

Keyword Description

if, switch Used	for	conditionals.		Parenthesis	around	variable	are	optional.		Braces	
around	conditional body	are	required.

for-in, for, while, 
repeat-while

Used	for loops.		Parenthesis	around	variable	are	optional.		Braces	around	
loop	body	are	required.



Swift	– Control	Flow

Ref.	CN5E,	NT@UW,	WUSTL13CS5530

• Switch



Swift	– Control	Flow

Ref.	CN5E,	NT@UW,	WUSTL14CS5530

• Switch
o let	can	be	used	in	a	pattern	to	assign	value

o No	need	to	break
} Only	one	match



Swift	– Control	Flow

Ref.	CN5E,	NT@UW,	WUSTL15CS5530

• for-in
o Iterate	over	items	in	a	dictionary	by	providing	a	pair	of	
names	to	use	for	each	key-value	pair.

o Dictionaries	are	unordered!



Swift	– Control	Flow

Ref.	CN5E,	NT@UW,	WUSTL16CS5530

o While	&	repeat-while	
} Same	as	C	or	Java’s	while	&	do-while.		

} repeat	{	…	}	while	some-condition

o For	loops	still	the	same
} Though	you	can	use	..< or ... to	make	ranges.

¨ 0..<7 non-inclusive	upper	bound.

¨ for i in 0..<7 { … }

¨ 0...7 inclusive	upper	bound

¨ for i in 0...7 { … }



Swift	– Functions	&	Closures

Ref.	CN5E,	NT@UW,	WUSTL17CS5530

• Use	func to	declare	a	function
o à to	indicate	return	type

o Use	a	tuple	to	make	a	compound	value:	return	multiple	values	from	a	
function	

} Elements	of	a	tuple	can	be	referred	to	by	name	or	by	number

} Defined	as	……	à (min: Int, max: Int, sum: Int)

} Access	as	results.sum, or results.2



Swift	– Functions	&	Closures

Ref.	CN5E,	NT@UW,	WUSTL18CS5530

o Can	take	variable	arguments,	collects	into	an	array	for	you.

o Can	be	nested.



Swift	– Functions	&	Closures

Ref.	CN5E,	NT@UW,	WUSTL19CS5530

o Functions	are	first-class	types:	they	can	return	another	
function	as	a	return-value

o Can	take	another	function	as	one	of	its	arguments



Swift	– Functions	&	Closures

Ref.	CN5E,	NT@UW,	WUSTL20CS5530

• A	closure	is	a	block	of	code	that	can	be	called	later	
(anonymous	function)

• Code	in	a	closure	has	access	to	
o Variables	and	functions	that	were	available	in	the	scope	where	the	closure	was	

created,	even	if	the	closure	is	in	a	different	scope	when	it	is	executed
o You	can	write	a	closure	without	a	name	(function	name)	

} Surround	code	with	braces	{}					
} Use	‘in’	to	separate	the	arguments	and	return	type	from	the	body

¨ Indicates	that	definition	of	closure’s	parameters	and	return	type	has	finished,	and	the	body	of	the	
closure	is	about	to	begin

Syntax:	
{	(parameters)	->	return	type	in

statements
}



Swift	– Functions	&	Closures

Ref.	CN5E,	NT@UW,	WUSTL21CS5530

o Concise	1:	if	type	already	known,	you	can	omit	types	of	
parameters	and/or	return	type.

o Concise	2:	can	refer	to	parameters	by	number	instead	of	
name



Swift	– Objects	&	Classes

Ref.	CN5E,	NT@UW,	WUSTL22CS5530

• Classes
o As	we’d	expect.
o Use	‘init’	as	initializer	/	constructor.

o Use	‘deinit’	as	deinitializer /	destructor
o Instantiation	by	referencing	class	name	followed	by	()

} var shape	=	Shape()



Swift	– Objects	&	Classes

Ref.	CN5E,	NT@UW,	WUSTL23CS5530

• Classes
o To	inherit,	subclasses	include	their	super	classes	name	
after	their	class	name,	separated	by	a	:
} class	Square:	Shape

} class	ViewController:	UIViewController,	UITextFieldDelegate

o Methods	in	a	subclass	that	override	the	superclass’s	
implementation	are	marked	with	override
} Overriding	a	method	by	accident,	without	override,	is	detected	
by	the	compiler	as	an	error



Swift	– Objects	&	Classes

Ref.	CN5E,	NT@UW,	WUSTL24CS5530

o Properties can	have	‘getter’	and	‘setter’	methods.
} Similar	to	Java,	C#,	VB.Net

} Note	‘newValue’	is	implicitly	defined	for	us	as	the	new	value	
(see	code	example)

} Can	be	explicit	by	declaring	the	setter	as:			
¨ set(<parameter_name>)

¨ set( mySide ) { ... }

¨ There	is	no	type	declaration	needed	because	the	property	defined	it.



Swift	– Objects	&	Classes

Ref.	CN5E,	NT@UW,	WUSTL25CS5530

o Inheritance
} Class:	parent	

} Over	ride	with	‘override’	keyword.

} Call	parent	methods	with	‘super.’	keyword.



Swift	– Enumerations	&	Structures

Ref.	CN5E,	NT@UW,	WUSTL26CS5530

• Enumerations
o Use	‘enum’	to	create	an	enumeration

} Swift	assigns	raw	values	starting	at	zero	and	increments	by	1,	
but	can	change	this	by	explicitly	specifying	values

o Can	have	methods	associated	with	them.



Swift	– Enumerations	&	Structures

Ref.	CN5E,	NT@UW,	WUSTL27CS5530

• Structures
o Use	‘struct’	to	create	a	structure.

o Support	many	of	the	same	behaviors	as	classes,	
including	methods	&	initializers.

o Structures	are	passed	by	value!	(classes	by	reference)	



Swift	– Protocols	&	Extensions

Ref.	CN5E,	NT@UW,	WUSTL28CS5530

• Protocols
o It’s	basically	an	‘interface’	from	other	OO	languages.
o Use	‘protocol’	to	declare	a	protocol.

o ‘mutating’	indicates	a	function	changing	the	struct.
} Not	needed	in	class	redefinitions	as	class	methods	can	always	modify	
the	class.

} Needed	in	structures	to	indicate	that	the	method	will	modify	the	
structure.

o Classes,	enumerations	and	structs can	all	adopt	protocols.



Swift	– Protocols	&	Extensions

Ref.	CN5E,	NT@UW,	WUSTL29CS5530

• Use	extensions	to	add	functionality	to	an	existing	type



Swift	– Error	Handling

Ref.	CN5E,	NT@UW,	WUSTL30CS5530

• Error	Handling
o Represent	errors	using	any	type	that	adopts	the	Error
protocol.

o Use	‘throw’	to	throw	an	error	and	‘throws’	to	denote	
a	function	that	can	throw	an	error.



Swift	– Error	Handling

Ref.	CN5E,	NT@UW,	WUSTL31CS5530

• Error	Handling
o do	/	catch

} In	do	block,	mark	code	that	can	throw	an	error	by	writing	try in	front	

} In	catch	block,	the	error	is	automatically	given	the	name	error	unless	
you	give	it	a	different	name

} Can	provide	multiple	catch	blocks	that	handle	specific	errors



Swift	– Comments

Ref.	CN5E,	NT@UW,	WUSTL32CS5530



Let’s	Practice!

Ref.	CN5E,	NT@UW,	WUSTL33CS5530

• Print	strings	(use	terminator:””	to	disable	\n)
o let	label	=	"The	width	is	"
o let	width	=	94
o print(label+String(width))			
o //	compare	with	print(label+String(width),	terminator:””)	

o let	apples	=	3
o let	appleSummary =	"I	have	\(apples)	apples."

o let	oranges	=	5
o let	fruitSummary =	"I	have	\(apples+oranges)	pieces	of	fruit."



Let’s	Practice!

Ref.	CN5E,	NT@UW,	WUSTL34CS5530

• Q1:	What’s	wrong	with	the	following	code?

• Q2:



Swift	Resources

Ref.	CN5E,	NT@UW,	WUSTL35CS5530

• Content	was	used	from	these	web	sites	where	appropriate.		
These	sites	contain	quite	a	bit	more	information	and	would	
make	a	great	resource	for	you.

https://developer.apple.com/

https://itunes.apple.com/us/book/the-swift-programming-
language/id881256329?mt=11

https://www.hackingwithswift.com/read

https://www.hackingwithswift.com/example-code


