CS5530

Mobile/Wireless Systems
Swift

Yanyan Zhuang
Department of Computer Science

http://www.cs.uccs.edu/~yzhuang

CS5530 UC. Colorado Springs Ref. CNSE, NT@UW, WUSTL

cat announce.txt

* iMacs remote VNC access

o VNP: http://www.uccs.edu/itservices/services/network-and-

internet/vpn.html

o VNC password: ¢s5530

o Please save datatoZ
o Please do not use iMacs in Library

o IT will upgrade...

| 2 CS5530 2 Ref. CNSE, NT@UW, WUSTL

* What is it?

o A new programming language for Apple products
iOS (ipods, iphones, ipads, etc.), macOS, watchOS, tvOS, future...

Currently at version 3

] To see your version: xcrun swift -version

0 Apple Swift version 3.0.2 (swiftlang-800.0.63 clang-800.0.42.1)

Open source

o Based on Objective-C and C.

Classes, instances, properties, methods, inheritance, etc.

| 2 CS5530 3 Ref. CNSE, NT@UW, WUSTL

o Requires an Apple product for development

Air, MacBook, MacBook Pro, iMac, iTrashCan (MacPro)

o Requires the Xcode’ development environment, Apple only.

o Resources at:

https://developer.apple.com/

| 2 CS5530 4 Ref. CNSE, NT@UW, WUSTL

Xcode Playground

o An interactive work environment that allows you update

values real-time and see results.
o A ‘project’ option in Xcode.

o New for iPad iOS 10!!!

L < Issuing Comman ds > b oo
Goal: Use Swift commands to tell Byte to move and
collect a gem.

Your character, Byte, loves to collect gems but can't do it
alone. In this first puzzle, you'll need to write Swift
commands to move Byte across the puzzle world to
collect a gem.

@ Look for the gem in the puzzle world.
@ Enter the mbinati f th
moveForward() and collectGem() commands.

@ Tap Run My Code.

nter code

| 2 CS5530 5 Ref. CN5E, NT@UW, WUSTL

Xcode Playground

activity viewer panel controls
o0 e [nno,nocaynzoaa] = @ &
Chapter01 playground
¢ 0 @ Chaptardt
m,
: ::o::ru- ::ollo, playground” “Hallo, plyground”

results
sidebar

source editor

=| >

execution control

> CS5530 6 Ref. CN5E, NT@UW, WUSTL

* Quick overview of the language

o Assignments

o Control Flow

o Functions and Closures

o Objects and Classes

o Enumerations and Structures
o Protocols

o Error Handling

| 2 CS5530 7 Ref. CNSE, NT@UW, WUSTL

Swift - Overview

* “Don’t need to import a separate library for

functionality like input/output or string handling.

* Code written at global scope is used as the entry

point for the program, so you don’t need main().

° Don’t need to write semicolons at the end of

every statement.”

* Excerpt From: Apple Inc. “The Swift Programming Language (Swift 3.0.1).” iBooks.
https://itun.es/ca/jJEUHO.I

| 2 CS5530 8 Ref. CNSE, NT@UW, WUSTL

Swift - Assighments

let Used for constants. Does not need to be known at compile time
but must be assigned a value exactly once.

var Used for variables.

o Types can be ‘inferred’ var myVariable = 42
myVariable = 50

O Can be eXpIICIt let explicitDouble: Double = 70

o NO implicit type conversions

Values in strings by using a “\”
let apples = 3
let applySummary = “I have \ (apples) apples.”

| 2 CS5530 9 Ref. CN5E, NT@UW, WUSTL

Swift - Assighments

let Used for constants. Does not need to be known at compile time
but must be assigned a value exactly once.

var Used for variables.

o Types can be ‘inferred’ var myvariable = 42
myVariable = 50

o Can be eXphCIt let explicitDouble: Double = 70

o NO implicit type conversions

Values in strings by using a “\”
let apples = 3
let applySummary = “I have \ (apples) apples.”

Values are never implicitly converted to another type. If need to convert a
value to a different type, explicitly make an instance of the desired type.

“The Swift Programming Language (Swift 3.0.1).”

| 2 CS5530 10 Ref. CN5E, NT@UW, WUSTL

Swift - Assighments

* Assignments

o Dictionaries and arrays use []
var shoppingList = [“hp”, “apple”, “microsoft”]
shoppingList[1] = “Lenovo”
var occupations = ["Malcolm": "Captain", "Kaylee": "Mechanic"]
occupations["Jayne"] = "Public Relations”

o Empty arrays or dictionaries
let emptyArray = [String] ()
Let emptyDictionary = [String: Float] ()

If type information can be inferred, can write an empty array as [] and an empty dictionary
as [:]

* Data Types

o Typical data types available.
String, Float, Double, Bool, Int/Uint, Character, Optional

| 2 CS5530 11 Ref. CNSE, NT@UW, WUSTL

Swift — Control Flow

Used for conditionals. Parenthesis around variable are optional. Braces

if, switch

around conditional body are required.

for-in, for,
repeat-while

while,

* For/if example

o If condition must be explicit

o if score{..} is an error

let individualScores = [75, 43, 103,

r teamScore = 0

for score in individualScores {
if score > 50 {
teamScore += 3
} else {
teamScore += 1
}
}

print (teamScore)

Used for loops. Parenthesis around variable are optional. Braces around
loop body are required.

87,

12]

> CS5530

12 Ref. CN5E, NT@UW, WUSTL

Swift — Control Flow

* Switch

let vegetable = "red pepper”
switch vegetable {
case "celery":

print ("Add some raisins and make ants on a log.")
case "cucumber", "watercress":

print ("That would make a good tea sandwich.")
case let x where x.hasSuffix("pepper"):

print ("Is it a spicy \(x)?2")
default:

print ("Everything tastes good in soup.")

> CS5530 13 Ref. CN5E, NT@UW, WUSTL

Swift — Control Flow

* Switch

o let can be used in a pattern to assign value

O NO need tO break let vegetable = "red pepper"”
OnIy one match switch vegetable {
case "celery":
print ("Add some raisins and make ants on a log.")
case "cucumber", "watercress":
print ("That would make a good tea sandwich.")
case let x where x.hasSuffix("pepper"):
print ("Is it a spicy \(x)?2?")
default:

print ("Everything tastes good in soup.")

| 2 CS5530 14 Ref. CN5E, NT@UW, WUSTL

Swift — Control Flow

o lterate over items in a dictionary by providing a pair of

names to use for each key-value pair.
let interestingNumbers = [
o Dictionaries are unordered! "brime™: (2, 3, 5, 7, 11, 131,

"Fibonacci": [1, 1, 2, 3, 5, 81,
"Square": [1, 4, 9, 16, 257,

]

var largest = 0

for (kind, numbers) in interestingNumbers {
for number in numbers {

if number > largest {

largest = number

| 2 CS5530 15 Ref. CN5E, NT@UW, WUSTL

Swift — Control Flow

o While & repeat-while

Same as C or Java’s while & do-while.

repeat { ... } while some-condition

o For loops still the same

Though youcanuse . .< or ... tomake ranges.

0 0. .<7 non-inclusive upper bound.
0 for 1 in O0..<7 { ..}
0 0...7inclusive upper bound

0 for 1 in O...7 { ..}

| 2 CS5530 16 Ref. CNSE, NT@UW, WUSTL

Swift — Functions & Closures

* Use func to declare a function

o =2 toindicate return type

func greet (person: String, day: String) -> String {
return "Hello \(person), today is \(day)."

}

greet (person: "Bob", day: "Tuesday")
o Use a tuple to make a compound value: return multiple values from a
function
Elements of a tuple can be referred to by name or by number
Defined as = (min: Int, max: Int, sum: Int)

Access as results.sum, or results.?

| 2 CS5530 17 Ref. CNSE, NT@UW, WUSTL

Swift — Functions & Closures

o Can take variable arguments, collects into an array for you.

func sumOf (numbers: Int...) -> Int {
var sum = 0
for number in numbers {
sum += number

}

return sum
}
sumOf ()

sumOf (numbers: 42, 597, 12)

o Can be nested.

func returnFifteen() -> Int {
var y = 10
func add() {y +=5}
add ()
return y

}

returnFifteen ()

| 2 CS5530 18 Ref. CN5E, NT@UW, WUSTL

Swift — Functions & Closures

o Functions are first-class types: they can return another

function as a return-value

func makeIncrementer() -> ((Int) -> Int) {
func addOne (number: Int) -> Int {
return 1 + number
}

return addOne

}

var increment = makeIncrementer ()
increment (7)

o Can take another function as one of its arguments

func hasAnyMatches(list: [Int], condition: (Int) -> Bool) -> Bool {

for item in list {
if condition(item) { return true }

}

return false
func lessThanTen (number: Int) -> Bool {

return number < 10

}

var numbers = [20, 19, 7, 12]
hasAnyMatches (list: numbers, condition: lessThanTen)

| 2 CS5530 19 Ref. CN5E, NT@UW, WUSTL

Swift — Functions & Closures

* A closure is a block of code that can be called later
(anonymous function)

* Code in a closure has access to

o Variables and functions that were available in the scope where the closure was
created, even if the closure is in a different scope when it is executed
o You can write a closure without a name (function name)
Surround code with braces {}

Use ‘in’ to separate the arguments and return type from the body

O Indicates that definition of closure’s parameters and return type has finished, and the body of the
closure is about to begin

Syntax: numbers.map ({
{ (parameters) -> return type in (number: Int) -> Int 1in
let result = 3 * number
statements return result

| 2 CS5530 20 Ref. CNSE, NT@UW, WUSTL

Swift — Functions & Closures

o Concise 1: if type already known, you can omit types of

parameters and/or return type.

let mappedNumbers = numbers.map({ number in 3 * number })
print (mappedNumbers)

o Concise 2: can refer to parameters by number instead of

Nname

let sortedNumbers = numbers.sorted { $0 > S1 }
print (sortedNumbers)

| 2 CS5530 21 Ref. CN5E, NT@UW, WUSTL

Swift — Objects & Classes

* Classes
o As we’d expect.

o Use ‘init’ asinitializer / constructor.

class NamedShape {

var numberOfSides: Int = 0
var name: String

init(name: String) { self.name = name }

func simpleDescription() -> String ({
return "A shape with \ (numberOfSides) sides."
}

)
o Use ‘deinit’ as deinitializer / destructor

o Instantiation by referencing class name followed by ()

var shape = Shape()

| 2 CS5530 22 Ref. CN5E, NT@UW, WUSTL

Swift — Objects & Classes

* Classes

o To inherit, subclasses include their super classes name
after their class name, separated by a :

class Square: Shape
class ViewController: UlViewController, UlTextFieldDelegate
o Methods in a subclass that override the superclass’s
implementation are marked with override

Overriding a method by accident, without override, is detected

by the compiler as an error

| 2 CS5530 23 Ref. CNSE, NT@UW, WUSTL

Swift — Objects & Classes

o Properties can have ‘getter’ and ‘setter’ methods.
Similar to Java, C#, VB.Net

Note ‘newValue’is implicitly defined for us as the new value

(see code example)

var perimeter: Double ({
get {return 3.0 * sideLength }
set { sideLength = newValue / 3.0 }
}
Can be explicit by declaring the setter as:
0 set (<parameter name>)
0 set(mySide) { ... }

[0 There is no type declaration needed because the property defined it.

| 2 CS5530 24 Ref. CNSE, NT@UW, WUSTL

Swift — Objects & Classes

o Inheritance

Class: parent
Over ride with ‘override’ keyword.
Call parent methods with ‘super.’ keyword.

class Square: NamedShape {
var sideLength: Double

init (sideLength: Double, name: String) {
self.sidelLength = sideLength
super.init (name: name)
numberOfSides = 4

}

override func simpleDescription() -> String {
| return "A square with sides of length \ (sideLength)."

| 2 CS5530 25 Ref. CN5E, NT@UW, WUSTL

Swift — Enumerations & Structures

* Enumerations

o Use ‘enum’ to create an enumeration

Swift assigns raw values starting at zero and increments by 1,

but can change this by explicitly specifying values

o Can have methods associated with them.

enum Suit {
case spades, hearts, diamonds, clubs

func simpleDescription() -> String {

switch self {
case .spades:

return "spades"
case .hearts:

return "hearts"
case .diamonds:

return "diamonds"

case .clubs:
return "clubs"
}

}
}
let hearts = Suit.hearts
let heartsDescription = hearts.simpleDescription ()

| 2 CS5530 26 Ref. CNSE, NT@UW, WUSTL

Swift — Enumerations & Structures

* Structures

o Use ‘struct’ to create a structure.

o Support many of the same behaviors as classes,

including methods & initializers.

o Structures are passed by value! (classes by reference)

struct: card
var rank: Rank
var suit: suit

func simpleDescription() -> String {
return "The \(rank.simpleDescription()) of \(suit.simpleDescription())"

}
}
let threeOfSpades = Card(rank: .three, suit: .spades)
let threeOfSpadesDescription = threeOfSpades.simpleDescription ()

| 2 CS5530 27 Ref. CN5E, NT@UW, WUSTL

Swift — Protocols & Extensions

* Protocols
o It’s basically an ‘interface’ from other OO languages.

o Use ‘protocol’ to declare a protocol.

protocol ExampleProtocol ({
var simpleDescription: String { get }

mutating func adjust ()

}
o ‘mutating’ indicates a function changing the struct.

Not needed in class redefinitions as class methods can always modify
the class.

Needed in structures to indicate that the method will modify the
structure.

o Classes, enumerations and structs can all adopt protocols.

| 2 CS5530 28 Ref. CNSE, NT@UW, WUSTL

Swift — Protocols & Extensions

* Use extensions to add functionality to an existing type

extension Int: ExampleProtocol {
var simpleDescription: String {
return "The number \(self)"
}
mutating func adjust() {

self += 42

}

print(7.simpleDescription)

| 2 CS5530 29 Ref. CN5E, NT@UW, WUSTL

Swift — Error Handling

* Error Handling

o Represent errors using any type that adopts the Error

protocol.

enum PrinterError: Error {
case outOfPaper
case noToner
case onFire

}
o Use ‘throw’ to throw an error and ‘throws’ to denote

a function that can throw an error.

func send(job: Int, toPrinter printerName: String) throws -> String {
if printerName == "Never Has Toner" ({
throw PrinterError.noToner
}

return "Job sent"

| 2 CS5530 30 Ref. CN5E, NT@UW, WUSTL

Swift — Error Handling

* Error Handling
- do / catch

do {
let printerResponse = try send(job: 1440, toPrinter: "Gutenberg")

print (printerResponse)

} catch PrinterError.onFire {
print ("I'1l1l just put this over here, with the rest of the fire.")

} catch let printerError as PrinterError ({
print ("Printer error: \(printerError).")

} catch {
print (error)

}
In do block, mark code that can throw an error by writing try in front

In catch block, the error is automatically given the name error unless
you give it a different name

Can provide multiple catch blocks that handle specific errors

| 2 CS5530 31 Ref. CNSE, NT@UW, WUSTL

Swift — Comments

// This is a comment. It i3 not executed.

// This is also a comment.
// Over multiple lines.

/* This is also a comment.
Over many..
many. ..
many lines. */

> CS5530 32 Ref. CN5E, NT@UW, WUSTL

Let’s Practice!

» Print strings (use terminator:”” to disable \n)

o let label ="The width is "
o let width=94
o print(label+String(width))

o // compare with print(label+String(width), terminator:

”II)

o let apples=3

o let appleSummary ="l have \(apples) apples."

o let oranges =5

o let fruitSummary ="l have \(apples+oranges) pieces of fruit."

| 2 CS5530 33 Ref. CNSE, NT@UW, WUSTL

Let’s Practice!

* Q1: What’s wrong with the following code?

let firstName = "Toby"

if firstName == "Toby" {
let lastName = "Mac"

} else 1f firstName == "Sobbie" {
let lastName = "Daren”

}
° Qz let fullName = firstName + " " + lastName

. Declare four constants named x1, y1, x2 and y2 of type pouble. These constants represent the 2-dimen-

sional coordinates of two points. Calculate the distance between these two points and store the result in a
constant named distance.

| 2 CS5530 34 Ref. CNSE, NT@UW, WUSTL

Swift Resources

* Content was used from these web sites where appropriate.
These sites contain quite a bit more information and would

make a great resource for you.

[Developer
https://developer.apple.com/

NVl https://www.hackingwithswift.com/read

E’J https://www.hackingwithswift.com/example-code
id

& https://itunes.apple.com/us/book/the-swift-programming-

rogemminglanguage/id881256329?mt=11

Language
Swift 3.0.1 Edition

SWIFT ONLINE

| 2 CS5530 35 Ref. CNSE, NT@UW, WUSTL

