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Abstract— Proportional delay differentiation (PDD) model is
an important approach for relative differentiated services provi-
sioning on the Internet. It aims to maintain pre-specified packet
queueing-delay ratios between different classes of traffic at each
hop. Existing PDD packet scheduling algorithms are able to
achieve the goal in long time-scales when the system is highly
utilized. This paper presents a new PDD scheduling algorithm,
called Little’s average delay (LAD), based on a proof of Little’s
Law. It monitors the arrival rate and the cumulative delays of
the packets from each traffic class, and schedules the packets
according to their transient queueing properties so as to achieve
the desired class delay ratios in both short and long time-scales.
Simulation results show that, in comparison with other PDD
scheduling algorithms, LAD can provide no worse level of service
quality in long time-scales and more accurate and robust control
over the delay ratio in short time-scales. In particular, LAD
outperforms its main competitors significantly when the desired
delay ratio is large.

I. INTRODUCTION

The past decade has seen an increasing demand for provi-
sioning of different levels of quality of service (QoS) on the
Internet to support different types of network applications and
different user requirements. Differentiated Services (DiffServ)
is one of the major effort to meet this demand [1]. It aims
to provide differentiated services among classes of aggregated
traffic flows within a router. Two different schemes exist for
DiffServ: Absolute DiffServ and relative DiffServ. Absolute
DiffServ aims to guarantee a class’s received resource, such as
bandwidth. Relative DiffServ is to quantify the quality spacing
between different classes.

Recently, a proportional delay differentiation (PDD) model
was proposed in support of relative DiffServ [2], [3]. It ensures
the quality spacing between classes of traffic to be proportional
to certain pre-specified class differentiation parameters. Since
then, many packet scheduling algorithms have been developed
to implement the PDD model. Representatives of the PDD
algorithms include backlog-proportional rate (BPR) [2], joint
buffer management and scheduling (JoBS) [5], proportional
average delay (PAD) [3], waiting-time priority (WTP) [3],
adaptive WTP [4], hybrid proportional delay (HPD) [3], mean-
delay proportional (MDP) [6], and VirtualLength [8]. They
demonstrated various characteristics in support of the PDD
model in different class load conditions and different time-
scales. Most of them are capable of achieving desired delay
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ratios, if the ratios are feasible, under heavy load conditions
and in long time-scales. However, for light load conditions and
in short time-scales, they exhibit various limitations. We shall
compare them with our algorithm in Section IV.

In this paper, we present a new PDD algorithm, called
Little’s average delay (LAD), based on a proof of Little’s
Law. Little’s Law regarding a queueing system states the
stationary relationship between queue length, arrival rate, and
queueing delay on average in the long run. The proof reveals
a transient property regarding the queueing length [7]; that
is, the queueing length of a class at any time is equal to
the product of the traffic arrival rate and the waiting time of
backlogged packets, plus the experienced delay of departed
packets. Accordingly, LAD monitors the average arrival rate
of every traffic class and the queueing delay of arrived packets,
including both the waiting packets in the queue and departed
packets, for the purpose of controlling the delay ratio in both
long and short time-scales.

Simulation results show that LAD overcomes the limitations
of its main competitors: AWTP, HDP, and MDP. Specifically,
whenever the PDD model of a desired class delay ratio is
feasible, LAD is capable of providing more accurate and
robust control over the delay ratio than its competitors in
short time-scales. The improvement is significant when the
desired delay ratio is large. In long time-scales, LAD performs
no worse than its competitors under any load conditions.
Moreover, the performance of LAD is independent of the
distributions of packet inter-arrivals and packet sizes because
of the generality of Little’s Law.

The remainder of the paper is organized as follows. Sec-
tion II overviews the PDD model and the existing PDD algo-
rithms. Section III presents the LAD algorithm and discusses
its design and implementation issues. Section IV compares
it with other PDD algorithms via extensive simulations. Sec-
tion V concludes this paper.

II. BACKGROUND AND RELATED WORK

We consider packet scheduling of a lossless, work-
conserving, and non-preemptive link that services M (M ≥ 2)
first-come-first-served (FCFS) queues, one for each traffic
class. The objective of the PDD model is to control the
quality spacing between different classes so that their average
delay ratios be proportional to certain class differentiation
parameters pre-specified by network operators. Let Wi denote
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the average delay of class i, and δi the pre-defined delay
differentiation parameter. The PDD model requires to ensure
that for any two classes i and j, 1 ≤ i, j ≤M ,

Wi

Wj
=

δi

δj
. (1)

Many packet scheduling algorithms have been proposed for
PDD service model. Rate-allocation algorithms, as exemplified
by BPR [2] and JoBS [5], adjust service rate allocations of
classes dynamically to meet the proportional delay differ-
entiation constraints. However, for accurate rate allocation,
the system should operate under high load conditions, this
limits the applicability of the rate-based PDD algorithms. In
contrast, our algorithm has good performance in various load
conditions.

Dynamic-priority algorithms adjust the priority of a back-
logged class according to its currently measured states. In
WTP, the priority of a backlogged class is adjusted to be
proportional to its head-of-line packet’s delay normalized with
respect to its delay differentiation parameter. Albeit simple,
WTP implements the PDD model only when the system
utilization approaches unity [2]. To overcome such limitation,
adaptive WTP adjusts the priority of a class not only according
to its experienced delay, but also based on the current class
load condition. We find out that such adjustment is valid for
certain network traffic with small degree of self-similarity. In
contrast, the performance of our algorithm is independent of
network traffic characteristics and load conditions.

Some algorithms determine the next packet according to
the average queueing delay of backlogged classes. It is known
that at time t, arrived packets of a class in a time window
[t− τ, t], can be in one of the two states: departed or waiting
in the queue. PAD considers the average delay of departed
packets in the time window only. It is capable of achieving the
PDD model constraints in various load conditions. However,
PAD exhibits a pathological behavior in short time-scales;
that is, occasionally higher classes to experience larger delays
than lower classes, which is caused by its ignorance of those
backlogged packets. To address this issue, HPD was proposed
to take into account the average delay of departed packets
and the delay of the head-of-line packet simultaneously. HPD
enhances the average control quality of PAD, and mean-
while avoids its pathological behavior problem. It, however,
achieves the class delay ratio with large statistical variations
in short time-scales, which will be shown in Section IV. MDP
considers the delay of all arrived packets of each class in
the time window. In addition, it also takes into account the
estimated delay of backlogged packets. In Section IV we shall
show that MDP delivers performance comparable to HPD.
However, its performance deteriorates as the target quality
spacing between the classes is enlarged. Note that PAD, HPD
and MDP schedule backlogged packets of different classes
based on heuristic delay information of arrived packets. In [8],
we proposed VirtualLength based on Little’s Law. It measures
the average arrival rates and queue lengths of different classes
over a time window and calculates their forwarding priorities.

LAD presented in this paper is based on a proof of Little’s
Law [7]. It considers the delay of departed packets as well as
the delay of the packets in the backlogged queue in the time
window.

III. LITTLE’S AVERAGE DELAY ALGORITHM

A. Little’s Law

In G/G/1 queueing system, Little’s Law states that the
average number of packets in the system is equal to the product
of average arrival rate of packets and the average waiting time
of the packets in the system. Define L(T ) as the average
number of the packets in the system during the time interval
[0, T ], W (T ) as the waiting time per packet averaged over all
packets, λ(T ) as the average arrival rate. Suppose W (T ) and
λ(T ) have limits as T →∞, that is

W = lim
T→∞

W (T ), and λ = lim
T→∞

λ(T ).

Then, the limit of L(T ), denoted by L, exists and

L = λW. (2)

The beauty of Little’s Law (2) is that it does not depend
upon any particular queueing discipline (packet scheduling
algorithms); nor does it depend upon any specific assumptions
regarding the packet arrival distribution or the packet size
distribution. It is applicable to the queueing system of each
traffic class in the PDD model.

LAD algorithm controls the delay ratios between different
classes based on the Little’s Law. Substituting L/λ for W , the
objective of PDD model in (1) leads to a new constraint:

Li

λiδi
=

Lj

λjδj
, (3)

for any two classes i and j. To ensure proportional delay
differentiation between two classes, their normalized queue
length with respect to their respective arrival rates and delay
differentiation parameters should be kept equal. The LAD
algorithm is to control the delay ratio by adjusting their
average queueing lengths according to their arrival rates.

Notice that (2) reveals an asymptotic (or stationary) relation-
ship between the queue length, packet arrival rate, and packet
waiting time in the system. It is not enough to guide PDD
scheduling because the objective of proportional delay needs
to meet in small time windows. Because most of Web requests
are small in size, provisioning of relative delay differentiation
service in short time-scales is as important as in long time-
scales. LAD algorithm is based on a transient property of the
queueing system, as revealed by a proof of the Little’s Law [7].
Following is a sketch of the proof.

Suppose that packets p1, p2, . . . arrive at time t1, t2, . . . (0 ≤
ti < ti+1), and depart at td1, t

d
2, . . . . The packets are not

necessarily forwarded in FCFS discipline. Denote N(T ) the
total number of arrived packets in the time interval [0, T ];
Nd(T ) and N c(T ) the number of departed packets and the
number of waiting packets in queue, respectively. It follows
that at time T ,

N(T ) = Nd(T ) + N c(T ). (4)
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Define Ii(t) as the presentation function of packet pi at time
t, that is

Ii(t) =
{

1, if packet pi is present at time t;
0, otherwise.

Then, we have

N c(T ) =
N(T )∑
i=1

Ii(t). (5)

Since packet pi stays in queue during the interval [ti, tdi ] and
its queueing delay wi = tdi − ti, we have∫ T

0

Ii(t)dt =
{

wi, tdi ≤ T ;
T − ti, tdi > T.

(6)

Therefore, the cumulative queue length in the interval [0, T ]
is

∫ T

0

N c(t)dt=
Nd(T )+Nc(T )∑

i=1

∫ T

0

Ii(t)dt

=
∑

{i:td
i ≤T}

wi +
∑

{i:ti≤T,td
i >T}

(
T − ti

)
, (7)

and the average queue length in interval [0, T ] is

L(T ) =
1
T

∫ T

0

N c(t)dt = λ(T )W (T ), (8)

where

λ(T )=
N(T )

T
, (9)

W (T ) =

∑
{i:td

i ≤T} wi

N(T )
+

∑
{i:ti≤T,td

i >T}
(
T − ti

)
N(T )

. (10)

Assuming that λ(T ) and W (T ) exist as T →∞, (8) leads to
that

L = lim
T→∞

λ(T )W (T ) = λW. (11)

This completes the proof.

B. The LAD Algorithm

The basic idea of LAD algorithm is to control the delay
ratio of classes by monitoring their arrival rates and queueing
delays of their arrived packets based on transient relationship
between the queue length, arrival rate and waiting time, as
revealed by (8). In particular, (10) defines the average waiting
time per packet in a window of size T . The numerator of
the first term actually represents the accumulated delays of
all departed packets and the numerator of the second term
represents the accumulated waiting time of the packets in the
backlogged queue so far at time T . Accordingly, we define
the LAD algorithm as follows.

For class i, the LAD scheduler maintains three control
variables to monitor its traffic flow over finite time window T :
the cumulative delays of departed packets W d

i ; the number of
arrived packets Ni; and current queue length N c

i . At the begin-
ning of each time window, these variables are (re)initialized.
Note that the size of T is in terms of number of successively

departed packets from the system. These control variables are
updated according to the following rules:

1) At the beginning of each time window, Ni ← N c
i and

Wi ← 0.
2) Upon the receipt of a packet of class i, the packet is

time-stamped and Ni ← Ni + 1, and N c
i ← N c

i + 1.
3) After transmitting a packet of class i, N c

i ← N c
i −1 and

W d
i ←W d

i + w, where w is the measured delay of the
packet.

Let W c
i denote the current cumulative delay of backlogged

packets in the queue i. According to (10), we set the priority
of class i as

Pi =
W d

i + W c
i

Niδi
. (12)

Whenever the queueing system is available for packet trans-
mission, a backlogged packet of class j∗ with the highest
priority is selected. That is,

j∗ = arg max
1≤i≤M

Pi. (13)

Ties for the highest priority are broken by serving the packet
that has entered the queueing system earliest. Note that the
validity of Little’s Law does not depend upon any particular
queueing discipline. Therefore, the next packet can be any
backlogged packet if a more complicated scheduling algorithm
is needed.

The determination of the time window size T is one
important implementation issue of the LAD algorithm. It is
known that Little’s Law is valid when the time window is
sufficiently large. However, provisioning PDD services in short
time-scales is as important as in long time-scales. A good
choice of T should strike a balance between system stability
and responsiveness. On one side, a large T would avoid
abrupt changes of average queueing delay due to bursty traffic.
Particularly, when T is sufficiently large, the average delay of
the packets in the time window would hide the effect of the
distributions of packet arrivals and packet sizes. On the other
side, a small T would lead to an agile scheduler that responds
to the change of traffic conditions quickly. Although we leave
T to be an adjustable parameter by network operators, in
our simulations, we show that LAD is able to provide PDD
services in both long and short time-scales.

In addition, for each packet transmission, LAD needs to
calculate and compare the priorities of all backlogged classes,
which requires at most N calculations and N−1 comparisons.
The calculation overhead is mainly due to the update of control
variables and time-stamping operations. The cost for update is
small because it involves only a few number of add operations;
the timestamping operation is assumed in the implementation
of WTP and MDP as well.

IV. SIMULATION RESULTS

In this section, we compare LAD with other PDD algo-
rithms, including WTP, AWTP, PAD, HPD, and MDP. A
primary performance metric is error between desired class
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delay ratio and achieved ratio. The results are an average of
1000 runs.

The experiments assumed the distributions of packet inter-
arrivals and sizes are similar to those in [3], [4]. That is,
the inter-arrivals between packets of a class follow a Pareto
or Poisson distribution. The packets size are variable with a
small number of choices. The transmission time of a packet
is proportional to its size.

We compared LAD with other PDD algorithms, including
WTP, AWTP, PAD, HPD, and MDP. In the experiments, we
assumed two classes of traffic with the equal class loads. The
packet arrivals of each class followed a Pareto distribution
(α = 1.5) and all the packets had equal size. The same stream
of packets was used for all the experiments with different PDD
algorithms. Our implementation of AWTP used the jumping
window method, as suggested in [4], to estimate the arrival
rate of traffic. HPD is a hybrid of WTP and PAD with a
weighting parameter g. We set the parameter g to 0.875 as
recommended in [3]. MDP takes into account the delay of
departed packets and the estimated delay of all other waiting
packets in the determination of class priorities. Although the
MDP authors suggested a simplified method to approximate
the average delay for all arrived packets to make a tradeoff
between quality and run-time overhead [6], we implemented
its original version in this experiment.

We also carried out experiments under various system
conditions. The simulation results show that the algorithm
is able to provide predictable and controllable differentiated
services. The performance of the algorithm is independent of
traffic characteristics. Due to the limitation of space, readers
are referred to [9] for details.

A. Comparison in short time-scales

We first compared the short time-scale performance of the
algorithms under different system utilization rates. The time
window was set to T = 100 packets. The simulation results
for the cases of δ1/δ2 = 2 and 8 are plotted in Fig. 1(a) and
Fig. 1(b), respectively.

Fig. 1(a) shows that all the PDD algorithms, except AWTP,
can meet the PDD constraints to an acceptable extent for
a small delay ratio under moderate and high system load
conditions. In particular, LAD achieves the desired delay
ratio with minimum errors consistently. In contrast, HPD and
MDP demonstrate good performance under moderate load
conditions, but yield relatively large errors when the system
utilization rate goes up to as high as 90%. Recall that HPD is
a hybrid of WTP and PAD. Both WTP and PAD gain perfor-
mance as the utilization rate increases, but their improvement
rates are different. Hence, a linear combination of the WTP
and PAD with a constant weighting parameter g in HPD is
expected to generate a convex performance plot with respect
to the utilization rate. This impact of linear combination can
be seen more clearly in Fig. 1(b) for the case of a large desired
delay ratio.

The reason for the inaccuracy of MDP in highly utilized
systems is the estimation error of the delays of backlogged
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(b) δ1/δ2 = 8.

Fig. 1. Delay ratios of class 1 to class 2 using different PDD algorithms in
different system utilizations.

packets in a time window of [t−τ,∞) at any time t. Although
MDP can measure the delay of packets in the time window
[t − τ, t], MDP uses a lower bound to estimate the delay of
the packets in future [t,∞). With the increase of the system
utilization, there are more packets in a backlogged queue
during the interval τ , and consequently the estimation error
increases. When the system utilization rate goes beyond certain
point, the impact of estimation accuracy becomes significant
and the overall performance of MDP starts to deteriorate.
Fig. 1(b) shows that the estimation error is exaggerated in
the case of a large desired delay ratio and the gap between
LAD and MDP is enlarged.

Fig. 1 shows that WTP yields relatively large errors when
the system utilization rate is moderate. This is consistent with
the findings of other researchers [3], [4]. AWTP was proposed
as a remedy of this problem [4]. It relies on a policy iteration
algorithm to adjust the feasible set of control parameters
according to the delay of the head-of-line packet in each class
and the class load distributions. The algorithm is based on
an assumption that the arrival process of each traffic class is
a Poisson distributions. The authors showed that AWTP be
applicable to the traffic of a Pareto distribution with the shape
parameter α = 1.9. The impact of α on the performance of
AWTP is discussed in [9].

B. Comparison in long time-scales

We compared LAD with other PDD algorithms, focusing
on their robustness in different time-scales. The experiment
settings remain the same as in the last one, except that the
system utilization rate is fixed at 90%. Fig. 2(a) and Fig. 2(b)
show three percentiles (the 5th, 50th, and 95th) of achieved
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delay ratios for the target ratio of 2 and 8, respectively. We
give the numbers in the figures directly for large percentiles.

Fig. 2 shows that LAD achieves the target ratios accurately
in all of the time-scales that we tested and outperforms its
competitors consistently in terms of the errors in various
percentiles. This implies that LAD is more robust to keep the
class delay ratio under control and deliver the desired ratio
with small statistical variations. Although all the algorithms
are able to meet the PDD constraints in terms of their medians
with small deviations in long time-scales, LAD is outstanding
to provide tight and robust control in a statistical sense over
the class delay ratio in short time-scales.

Fig. 2(a) shows that all the PDD algorithms, except MDP,
are able to achieve the delay ratio of 2 with a high probability
in the short time-scale of 100 packets. LAD demonstrates an
excellent robustness because more than 90 percentage of the
total runs would produce ratios between 1.6 and 2.4. MDP is
robust, as well, but its achieved ratios center around 1.6. In
contrast, AWTP, HPD, and PAD exhibit a “heavy tail” property
in that majority of the runs, under the control of the algorithms,
would lead to delay ratios that are close to the target ratio of
2, but the algorithms could lose the control in a few occasions.

Fig. 2(a) also shows that the success probability of the
algorithms increases with the time scale. In the long time-
scale of 10000 packets, all the algorithms are able to achieve
the target delay ratio robustly.

In comparison with Fig. 2(b), we observe that all the PDD
algorithms lose certain degrees of robustness when the desired
delay ratio δ1/δ2 is large. In the short time-scale of 100
packets, LAD performs slightly better than WTP and AWTP,
but outperforms PAD, HPD and MDP significantly in terms of
their medians. The goodness of WTP and AWTP are mainly
due to the high utilization ratio (90%) that we assumed in this
experiment. WTP and AWTP provide consistent levels of QoS,
independent of the desired delay ratio. This is because they
use extra control parameters to adjust the impact of the pre-
defined delay ratio. But they are lack of robustness because of
their medians with large statistical variations. PAD, HPD and
MDP perform in a similar way to LAD. They differ in the
way of delay estimation of arrived packets. Fig. 2(b) shows
that their performance gap in short time-scales gets larger as
the delay ratio increases. As the time-scale increases, all the
PDD algorithms gain more control over the delay ratio. In the
long time-scale of 10000 packets, LAD provides similar levels
of QoS to HPD and MDP.

We conclude that in short time-scales, LAD consistently
outperforms its competitors for large target delay ratios. For
small target ratios, most of the algorithms can provide an
acceptable level of quality of service. Under heavy load
conditions and in long time-scales, LAD performs similarly
to HPD and MDP. WTP, AWTP, and PAD are not as robust
as the others due to their large statistical variations.

V. CONCLUSIONS

We have proposed a new proportional delay differentiation
algorithm, called LAD, to implement the PDD model. The
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Fig. 2. Percentiles of achieved delay ratios using different PDD algorithms
in different time-scales.

algorithm is derived from a proof of Little’s Law. It monitors
the arrival rate of the packets in each traffic class and their
cumulative delays and achieves the desired class delay ratios
in both short and long time-scales. Simulation results have
shown, in comparison with other PDD algorithms, LAD pro-
vides no worse level of service quality in long time-scales and
more accurate and robust control over the delay ratio in short
time-scales. Our future work will address issues on Internet
servers so as to provide end-to-end differentiated services to
network applications and users.
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