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Abstract

A scalable e-Commerce server should be able to pro-
vide different levels of quality of service (QoS) to different
types of requests according to clients’ navigation patterns
and the server capacity. In this paper, we propose a two-
dimensional (2D) service differentiation (DiffServ) model
for on-line transactions: inter-session and intra-session. The
inter-session model aims to provide different levels of QoS
to sessions from different customer classes, and the intra-
session model aims to provide different levels of QoS to re-
quests in different states of a session.

We introduce service slowdown as a QoS metric of e-
Commerce servers. It is defined as the weighted sum of re-
quest slowdown in different sessions and in different session
states. We formulate the problem of 2D DiffServ provision-
ing as an optimization of processing rate allocation with the
objective of minimizing service slowdown. We derive the op-
timal allocations for an M/G/1 server under various server
load conditions and prove that the optimal allocations guar-
antees requests’ slowdown to be square-root proportional
to their pre-specified differentiation weights in both dimen-
sions. We evaluate the optimal allocation scheme via exten-
sive simulations and compare it with a tailored proportional
DiffServ scheme. Simulation results validate that both allo-
cation schemes can achieve predictable, controllable, and
fair 2D slowdown differentiation on e-Commerce servers.
The optimal allocation scheme guarantees 2D DiffServ at
a minimum cost of service slowdown.

1. Introduction

In the server side, service differentiation (DiffServ) is
to treat client requests differently based on clients’ needs
and servers’ resource limitations. Because clients are differ-
ent in their visiting patterns, receiving devices, and service
fees, a scalable e-Commerce server needs to provide dif-
ferent levels of QoS to different clients. DiffServ has been
an active research topic in the arena of networking since
its architecture was first formulated by IETF [4]. Its goal
is to define configurable types of packet forwarding so as to
provide per-hop differentiated services for large aggregate
of network traffic. Network alone is not sufficient to sup-
port end-to-end DiffServ. There are recent efforts on server-
side DiffServ for various Web and multimedia applications;

see [1, 3, 5, 22, 21] for examples. However, few exists for
DiffServ in session-based e-Commerce applications.

A session is a sequence of individual requests of differ-
ent types made by a single customer during a single visit to
an e-Commerce site. During a session, a customer can issue
consecutive requests of various functions such as browse,
search, select, add to shopping cart, register and pay. It has
been observed that different customers exhibit different nav-
igation patterns. Actually, only few customers are heavy
buyers and all others are occasional buyers or visitors. Re-
cent studies on customer behaviors of some e-Commerce
sites showed that only 5% to 10% customers were inter-
ested in buying something during the current visit and about
50% of these customers were capable of completing their
purchases [15, 16, 17]. Although it is important to accom-
modate the remaining 90% to 95% customers in order to
turn them into loyal customers in future, the 5% to 10% pre-
mium customers should be preferential. This requires a scal-
able e-Commerce server to provide different levels of QoS to
sessions from different customers. We refer to this as inter-
session differentiation.

An e-Commerce session contains a sequence of requests
for various functions in different states. Requests in differ-
ent states have different opportunities to turn themselves to
be profitable. E-Commerce servers should also provide dif-
ferent levels of QoS to requests in different states in each
session so that profitable requests like order and checkout
are guaranteed to be completed in a timely manner. We re-
fer to this as intra-session differentiation.

In this paper, we investigate the problem of the two-
dimensional (2D) DiffServ provisioning on e-Commerce
servers, where the customers can be classified according to
their profiles and shopping behaviors. User-perceived QoS
of on-line transactions is often measured by a performance
metric of response time. It refers to the duration of a request
between its arrival and departure times, including waiting
time in a backlogged queue and actual processing time. Note
network transmission delay is beyond the scope of the paper.
DiffServ provisioning with respect to response time can be
achieved to some extent by conventional priority-based re-
quest scheduling. The principle of priority-based scheduling
is widely used to support packet queueing-delay differenti-
ation in networking. Most of the delay differentiation algo-
rithms can be tailored for request response time differentia-
tion on e-Commerce servers [6, 13].

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04) 

1063-6927/04 $20.00 © 2004 IEEE 



Response time reflects user-perceived absolute perfor-
mance of a server. It is not suitable for comparing the quality
of requests that have different resource demands. Customers
are likely to anticipate short delays for ”small” requests like
browsing, and are willing to tolerate long delays for ”large”
requests like search. A more important performance metric
is slowdown. A request’s slowdown is defined as the ratio of
its delay in a backlogged queue relative to its service time.
Since slowdown translates more directly to user-perceived
system load, it is more often used as a performance met-
ric of responsiveness on Interne servers [9, 18, 22]. DiffServ
with respect to slowdown is beyond the capabilities of prior-
ity based request scheduling schemes, which adjust the pri-
ority of backlogged requests according to their experienced
queueing delays, without taking into account any informa-
tion about their service time. A queueing discipline based
on request service time violates a fundamental Little’s Law
on which the priority-based scheduling principle is built.

This paper proposes and formulates the 2D DiffServ
model with respect to slowdown as an optimization prob-
lem of processing rate allocation for the objective of min-
imizing service slowdown of the e-commerce server. We
assume that the e-Commerce server has a single process-
ing resource bottleneck. Although processing a request of-
ten needs to consume resources of different types, resource
management usually focuses on the allocation of the most
critical resource. This single resource bottleneck assumption
was made in [1, 6, 7, 9], as well. We derive an optimal pro-
cessing rate allocation scheme and prove that the scheme
guarantees square-root proportional DiffServ and hence it
is fair. We then evaluate the allocation scheme via extensive
simulations and verify the differentiation predictability, con-
trollability, and fairness of the scheme.

In the following, Section 2 gives the 2D DiffServ model
and the problem formulation. Section 3 presents the rate al-
location schemes. Sections 4 and 5 present implementation
issues and simulation results. Related work is reviewed in
Section 6. Section 7 concludes the article.

2. 2D Service Differentiation

2.1. Modeling of 2D Service Differentiation

For DiffServ, incoming requests from different clients
need to be classified into multiple classes according to their
profile, device, payment, etc. Basically, there are two types
of DiffServ schemes [4]. One is absolute DiffServ, in which
each request class receives an absolute share of resource us-
ages. The other is relative DiffServ, in which a class with
a higher desired QoS level (referred to as a higher class)
will receive better (at least no worse) service quality than a
lower class. Although absolute DiffServ is desired to hard
real-time applications like audio/video streaming services,
relative DiffServ is sufficient for soft real-time applications
like e-Commerce transactions.

In order for a relative DiffServ scheme to be effective, the
scheme must satisfy two basic properties: predictability and
controllability. Predictability requires that higher classes re-

ceive better or no worse service quality than lower classes,
independent of the class load distributions. Controllability
requires that the scheduler contain a number of control-
lable parameters that are adjustable for the control of quality
spacings between classes. An additional requirement on e-
Commerce servers is fairness. That is, requests from lower
classes should not be over-compromised for requests from
higher classes. It is important to provide preferential treat-
ments to sessions from premium customers and to requests
that are likely to end with a purchase. However, e-Commerce
servers should also handle other non-buying sessions that ac-
count for about 90% to 95% of visits if one wants to turn
them into loyal customers [15, 16, 17].

Because different customers have different navigation
patterns, the 2D DiffServ model classifies the customers into
m classes according to statistics of their shopping behav-
iors, such as buy to visit ratio. Customers in the same class
have similar navigation patterns. The 2D DiffServ model as-
sumes that each session of customer class i (1 ≤ i ≤ m) has
n states, each corresponding to a request function. A cus-
tomer’s request is classified as being in different states ac-
cording to the type of function requested.

We assume that session arrivals from each customer class
meet a Poisson process. Note that requests in each state from
sessions of different customers are independent because the
session head requests are independent. However, a customer
may visit a state many times in a session. For example, a cus-
tomer can submit a search request at time t1, select a com-
modity at time t2 (after some think time), and submit an-
other search request at time t3. Evidently, these requests at
the search state are dependent and their dependency degree
is determined by the navigation pattern of that customer. We
notice that an e-Commerce server can accommodate many
concurrent sessions from independent customers and that
the number of re-visits in a session is limited (on average,
the maximum number of visits at a state in a session is 2.71
and 6.76 for a heavy buyer class and for an occasional buyer
class, respectively according to [15, 16]). That is, all the re-
quests at the same state are weakly dependent. Therefore,
we assume that request arrivals in each state from sessions
of a customer class still meet a Poisson process. We model
the server as a M/G/1 queue. The requests are scheduled
in a processor-sharing manner by storing them into m × n
queues, each associated with a state.

Assume requests in Poisson process arrive at a rate λ. De-
note µ the request processing rate. It follows that the traffic
intensity ρ = λ/µ. Let S be a request’s slowdown. Accord-
ing to queueing theories [12], when ρ < 1 (λ < µ), we have
the expected slowdown as

S =
ρ

1 − ρ
. (1)

2.2. Formulation of Processing Rate Allocation

The basic idea of the processing rate allocation for pro-
visioning 2D DiffServ on an e-Commerce server is to di-
vide the scheduling process into a sequence of short inter-
vals. In each interval, based on the measured resource uti-
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lization and the predicted workload, the available processing
resource usages are allocated to requests in different states
from different sessions.

Let C be the total amount of the processing resource
available during the current allocation interval. The server’s
scheduler has to determine the amount of the resource us-
ages allocated to requests in each queue so that 2D DiffServ
is achieved and resource utilization is maximized.

A session in different states usually demands different
processing resource usages [2, 15, 16, 19]. Let rj be the av-
erage resource demand of a session in state j. Let ci,j be the
amount of the resource allocated to requests from sessions
of class i in state j in the current allocation interval. Thus,
ci,j/rj is the processing rate of requests in state j from ses-
sions of class i. Let vi,j denote the average number of visits
to state j in a session from class i. Let di,j denote the re-
source demand of a session from class i in state j. That is,
di,j = vi,jrj . According to (1), the slowdown of a request
from a session of class i in state j, si,j , is calculated as:

si,j =
λivi,j

ci,j/rj − λivi,j
=

λidi,j

ci,j − λidi,j
, (2)

where λi is the session arrival rate of class i.
We consider the processing rate allocation for 2D Diff-

Serv when the following constraint holds in each resource
allocation interval:

m∑
i=1

n∑
j=1

λidi,j < C. (3)

That is, the request processing rate of the server is higher
than the request arrival rate. Otherwise, a request’s slow-
down can be infinite. DiffServ would be infeasible.

Let αi be the normalized quality differentiation weight of
sessions from class i. That is, αi > 0 and

∑m
i=1 αi = 1. Be-

cause sessions from class i should receive better or no worse
service quality than sessions from class i + 1 according to
inter-session DiffServ, without loss of generality, we assume
α1 ≥ α2 ≥ · · · ≥ αm. The values of αi can be determined
according to the shopping behaviors of class i, such as their
buy to visit ratio [15, 16].

Let βj be the normalized quality differentiation weight of
state j in a session. That is, βj > 0 and

∑n
j=1 βj = 1. The

values of βj can be determined according to the character-
ization of transition probability from state j to state pay in
sessions from all classes. Without loss of generality, we as-
sume β1 ≥ β2 ≥ · · · ≥ βn. Based on the concept of slow-
down for individual requests, we define a metric of session
slowdown as

∑n
j=1 βjsi,j to reflect the weighted slowdown

of requests in a session from class i. We further define a met-
ric of service slowdown as

∑m
i=1

∑n
j=1 αiβjsi,j to reflect

weighted session slowdown of sessions from all classes.
We formulate the processing rate allocation for the 2D

DiffServ as the following optimization problem:

Minimize
m∑

i=1

n∑
j=1

αiβjsi,j (4)

Subject to
m∑

i=1

n∑
j=1

ci,j ≤ C (5)

si,j =
λidi,j

ci,j − λidi,j
> 0. (6)

The objective function (4) is to minimize the service
slowdown of the server. It implies that sessions from higher
classes get lower slowdown (higher QoS) and hence inter-
session differentiation is achieved. It also implies that ses-
sions in high states get lower slowdown and hence intra-
session differentiation is achieved. The rationale behind
the objective function is its feasibility, differentiation pre-
dictability, controllability and fairness, as we discussed in
Section 2.1. (5) gives a resource allocation constraint over
variables ci,j . (6) ensures the positivity of slowdown.

3. Processing Rate Allocation Schemes

3.1. An Optimal Allocation Scheme

The above optimization problem is essentially a continu-
ous convex separable resource allocation problem. Accord-
ing to theories of general resource allocation problems [10],
its optimal solution occurs when the first order derivatives
of the objective function (4) over variables ci,j , 1 ≤ i ≤ m
and 1 ≤ j ≤ n are equivalent. Specifically, the optimal so-
lution to (4) occurs when

− αi1βj1λi1di1,j1

(ci1,j1 − λi1di1,j1)2
− αi2βj2λi2di2,j2

(ci2,j2 − λi2di2,j2)2
(7)

for 1 ≤ i1, i2 ≤ m and 1 ≤ j1, j2 ≤ n.
It follows that

ci,j − λidi,j

c1,1 − λ1d1,1
=

√
αiβjλidi,j

α1β1λ1d1,1
(8)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Let λ̃i,j = αiβjλidi,j . Together with the constraint (5),

the set of equations (8) leads to the optimal allocation as

ci,j = λidi,j +
λ̃

1/2
i,j∑m

i=1

∑n
j=1 λ̃

1/2
i,j

(C−
m∑

i=1

n∑
j=1

λidi,j). (9)

Accordingly, the slowdown of a request is

si,j =
λidi,j

∑m
i=1

∑n
j=1 λ̃

1/2
i,j

λ̃
1/2
i,j (C − ∑m

i=1

∑n
j=1 λidi,j)

. (10)

¿From (10), we have the following three basic properties
regarding the differentiation predictability and controllabil-
ity given by the optimal processing rate allocation scheme:

1. If the session weight or the state weight of a request
class increases, slowdown of all other classes increases,
while slowdown of that class decreases.
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2. Slowdown of a request class increases with the increase
of session arrival rate and the number of visits to that
state of each request class.

3. Increasing the workload (session arrival rate or the
number of visits to a state in a session) of a higher class
causes a larger increase in slowdown of a class than in-
creasing the workload of a lower class.

Recall di,j = vi,jrj . From (10), we further have the fol-
lowing DiffServ ratios:

si2,j

si1,j
=

√
λi2vi2,j

λi1vi1,j

√
αi1

αi2

for j = 1, 2, · · · , n(11)

si,j2

si,j1

=

√
di,j2

di,j1

√
βj1

βj2

for i = 1, 2, · · · , m (12)

si2,j2

si1,j1

=

√
λi2di2,j2

λi1di1,j1

√
αi1βj1

αi2βj2

. (13)

¿From (11), (12), and (13), we can see that the optimal
processing rate allocation has the property of fairness, as
well. That is,

Theorem 3.1 The optimal allocation (9) guarantees rel-
ative service differentiation between the requests in both
inter-session and intra-session dimensions and their quality
spacings with respect to slowdown are square-root propor-
tional to their per-defined differentiation weights.

Remark 1. If session arrival rate λi and the resource re-
quirement of a session from a customer class in a state (di,j)
are fixed, a request class (i, j) with a higher session weight
αi or with a higher state weight βj gets more portion of
available processing rate of the e-Commerce server. How-
ever, we note that the predictability of inter-session Diff-

Serv holds iff
√

λi1vi1,j

λi2vi2,j
≤

√
αi1
αi2

for all j = 1, 2, · · · , n.

Also, the predictability of intra-session service differenti-

ation holds iff
√

di,j1
di,j2

≤
√

βj1
βj2

for all i = 1, 2, · · · , m.

Otherwise, the essential requirement of 2D DiffServ, pre-
dictability, will be violated. For differentiation predictabil-
ity, one solution is temporary weight promotion, as sug-
gested in [22]. When it is applied in this context, based on
the current session arrival rates and the number of visits to a
state in sessions, the scheduler temporarily increases session
weights αi and state weights βj in the current rate alloca-
tion interval so that the predictability of 2D DiffServ holds.
In this case, the allocation scheme is heuristic.

Remark 2. We consider the problem of processing rate al-
location for 2D DiffServ when constraint (3) holds. Other-
wise, a request’s slowdown can be infinite and provision-
ing slowdown differentiation would be infeasible. Session-
based admission control mechanisms can be applied to drop
sessions from low classes so that constraint (3) holds.

3.2. A Proportional Slowdown Allocation Scheme

To provide more insights into the impact of vari-
ous processing rate allocation schemes on 2D DiffServ on

e-Commerce servers, we present a proportional share al-
location scheme that is tailored from proportional delay
differentiation in network packet routing [8, 14].

A proportional resource allocation scheme assigns qual-
ity factors to request classes in proportion to their qual-
ity differentiation weights. In the 2D DiffServ model on e-
Commerce servers, the quality factors of request classes are
represented by their slowdown si,j . Consequently, the pro-
portional model imposes the following constraints for inter-
session DiffServ and intra-session DiffServ, respectively:

si2,j

si1,j
=

αi1

αi2

, for all j = 1, 2, · · · , n (14)

si,j2

si,j1

=
βj1

βj2

, for all i = 1, 2, · · · , m (15)

where αi and βi are the normalized quality weighting fac-
tors as defined in 2.2.

Based on the above analysis for the optimization-based
processing-rate allocation scheme, we consider the propor-
tional rate allocation problem when constraint (3) holds. Re-
call the definition of slowdown in (2). According to (14) and
(15), we derive the following equation system:

si2,j2

si1,j1

αi1βj1

αi2βj2

(16)

for 1 ≤ i1, i2 ≤ m and 1 ≤ j1, j2 ≤ n.
Together with the constraint (5), the set of equations (16)

leads to a processing rate allocation as

ci,j = λidi,j +
λ̃i,j∑m

i=1

∑n
j=1 λ̃i,j

(C−
m∑

i=1

n∑
j=1

λidi,j). (17)

Accordingly, the slowdown of a request is

si,j =

∑m
i=1

∑n
j=1 λ̃i,j

αiβj(C − ∑m
i=1

∑n
j=1 λidi,j)

. (18)

According to (14) and (15), the proportional allocation
scheme generates consistent and predictable schedules for
2D DiffServ on e-Commerce servers.

4. Implementation Issues

To evaluate the proposed processing rate allocation
schemes on 2D DiffServ provisioning, we built a simula-
tion model for e-Commerce servers. We used a synthetic
workload generator derived from the real traces [6, 15, 16].
It allowed us to perform sensitivity analysis in a flexi-
ble way. Figure 1 outlines the basic architecture of the
simulation model. It consists of a customer generator, a ses-
sion generator, a request generator, a session/request rate
estimator, a listen queue, and an e-Commerce server.

Based on the customer classification (e.g., heavy buyer
or occasional buyer), the customer generator assigns session
arrival rate for each customer class (λi). The session genera-
tor then produces head requests that initiate sessions for the

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04) 

1063-6927/04 $20.00 © 2004 IEEE 



i j

Processing rate
calculation

C

Server

Resource allocation

pre−specified
2D weights

Session/request
rate estimator ’

iλ vij’

Session
generator

λ iCustomer
classifier

CBMG
Request
generator

vij

α i β j

Figure 1: The arch. of the simulation model.

class. The session generation follows a Poisson process. The
subsequent requests of a session are generated by the request
generator according to its Customer Behavior Model Graph
(CBMG). That is, based on the current state, transition prob-
ability and think time associated with each state, requests are
generated for the session. Figure 2 shows two CBMGs for
a heavy buyer class and an occasional buyer class, respec-
tively. The CBMGs were derived from an on-line shopping
store trace and given in [15, 16]. We implemented both pro-
files in our simulations.

Each session request is sent to the e-Commerce server
and stored in a listen queue. The listen queue is limited to
1,024 entries, which is a typical default value [7]. If the lis-
ten queue is full, a new request to the server is rejected and
both the request and the whole session is aborted. In the sim-
ulations, we simulated a file mix as defined by TPC-W [19],
a benchmark of e-Commerce workloads. The average re-
source demand of sessions in each state is assumed to be
the same. It is exponentially distributed with a mean. The
e-Commerce server’s capacity is 1,000 requests per second
for a TPC-W-like file mix and the service time for a request
is proportional to the requested file size.

We divided the scheduling process into a sequence of
short intervals of processing rate calculation and resource
allocation. The calculation of processing rate for each class
was based on the measured session arrival rate of each class,
the number of visits to a state in a session from each class,
the average resource demand of a request in a state in a
single session, as well as the pre-specified 2D differentia-
tion weights αi and βj . A fairly accurate estimation of these
parameters is required so that the proposed rate allocation
schemes can adapt to the dynamically changing workloads.
We utilized history information to estimate these values in
the session/request rate estimator. The estimate of session ar-
rival rate of each customer class (λ′

i) was obtained by count-
ing the number of new sessions from each class occurring in
a moving window of the past allocation intervals. As a typ-
ical way of calculating request arrival rate based on history
information, the moving window is widely used in many
similar experiments [7]. Smoothing techniques were applied
to take weighted averages over past estimates. Similarly, the
number of visits to a state in a session from each customer
class (v′i,j) was estimated.

The server maintained m × n listen queues. Given the
processing rate for each class ci,j according to the results of
(9) and (17), a generalized proportional-share scheduling al-
gorithm (GPS) [11] was simulated to allocate CPU resource
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Figure 2: CBMGs for different customer classes.

between m × n threads. Each thread processed requests
from a class stored in the corresponding queue.

5. Performance Evaluation

We considered two customer classes: heavy buyer (class
A) and occasional buyer (class B). Their CBMGs are shown
in Figure 2 [15, 16]. Because the buy to visit ratio of two cus-
tomer classes is 0.11 and 0.04, respectively, we assigned ses-
sion differentiation weight as 11:4 to class A and B. We de-
fined 6 states for each session: pay, add to shopping cart, se-
lect, search, browse and entry. They were sorted in a non-
increasing order according to their number of state transi-
tions needed to end in the pay state. We assigned state dif-
ferentiation weight as 5:4:3:2:2:1 to the states correspond-
ingly. The average number of visits to each state in a ses-
sion is derived from the CBMGs. It is 0.11, 0.37, 1.12, 2.71,
2.71, and 1 for customer class A, and 0.04, 0.14, 2.73, 6.76,
6.76, and 1 for customer class B, respectively. The ratio of
session arrival rate of class A and B was set to 1:9, accord-
ing to [15, 16]. Each result is an average of 200 runs.

5.1. Impact of DiffServ on Service Slowdown

Figure 3 shows the results of service slowdown with the
increase of server load. The results were obtained by the use
of the optimal and the proportional allocation schemes. For
comparison, the figure also includes the results without Diff-
Serv. When the server load is below 10%, slowdown of all
request classes is very small. When the server load is above
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90%, slowdown of some request classes is very large. Actu-
ally, due to the limitation of listen queue size, some requests
were rejected and their sessions were aborted. Session-based
admission control mechanisms are required when the server
is heavily loaded. Since our focus was on provisioning 2D
DiffServ by the use of proposed processing rate allocation
schemes, we varied the server load from 10% to 90%.

First, we found that simulation results agree with the ex-
pected results before the server is heavily loaded (≤ 70%).
The agreement verifies the assumption made in the model-
ing (Section 2.1) that request arrivals in each state from ses-
sions of a class can be seen to be a Poisson process if session
arrivals of that class meet a Poisson process. The gap be-
tween the simulated results and the expected ones increases
as the server load increases. This is due to the variance of ar-
rival distributions. Second, as we expected, the optimal al-
location scheme minimizes service slowdown. The propor-
tional allocation scheme achieves higher service slowdown.
Obviously, an e-Commerce server without service differen-
tiation provisioning receives much higher service slowdown.
In the following, we give more sensitivity analysis of the op-
timal allocation scheme. Readers are referred to [20] for de-
tailed analysis of the proportional allocation scheme.

5.2. Impact of DiffServ on Request Slowdown
Figure 4 shows slowdown of individual requests in dif-

ferent states due to inter-session and intra-session DiffServ
when the server has 50% (medium) load. It can be seen that
the requests in the browse and search states almost have the
same slowdown. This is because the customers have similar
behaviors in these two states in terms of their state transition
probabilities and resource demands. They were assigned the
same state weight. In the following, we will use the search
state to represent both and use the results of the search state
to address inter-session DiffServ.

Both Figures 4(a) and 4(b) show that the objective of
inter-session DiffServ is achieved. In each state, sessions
from class A always have lower slowdown than those of
class B. From Figure 4(a), it can be seen that the require-
ment of intra-session DiffServ predictability between the en-
try state and the search state is violated in both class A and
B categories. Sessions in the entry state should have higher
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(b) Proportional allocation scheme.

Figure 4: Inter-session and intra-session DiffServ when the
server has 50% load.

slowdown than sessions in the search state. Although the op-
timal allocation scheme minimizes service slowdown, the

requirement of
√

di,j1
di,j2

≤
√

βj1
βj2

can be violated between the

corresponding states, as we discussed in Section 3.1. This vi-
olation scenario provides an intuition into the fact that the
DiffServ predictability of the optimal allocation scheme de-
pends on class load distributions. It demonstrates that to pro-
vide predictable DiffServ, a scheduler must be able to con-
trol the settings of some parameters (e.g., promoting differ-
entiation weights). In contrast, there are no such violations
in Figure 4(b). This is because the proportional allocation
scheme can guarantee DiffServ predictability. However, this
is achieved at the cost of much higher service slowdown, as
shown in Figure 3.

Figure 5 shows a microscopic view of slowdown of indi-
vidual requests due to the optimal allocation scheme when
the server has 20% (light), 50% (medium) and 80% (heavy)
load. At each load, the results were recorded for 60 seconds
and shown in the figures from left to right. Each point rep-
resents slowdown of a request class in consecutive record-
ing time units (seconds). Figure 5(a) illustrates inter-session
DiffServ. All sessions are at search state. The plots from
other states have the similar shapes. They show that the ob-
jective of inter-session DiffServ is achieved consistently in
the short run. Figure 5(b) illustrates intra-session DiffServ
over sessions of class B. The results of class A have simi-
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Figure 5: A microscopic view of slowdown of individual re-
quests due to the optimal allocation scheme.

lar patterns. In the following, we use results of class B to ad-
dress intra-session DiffServ.

Figure 6 shows average slowdown of request classes with
the increase of server load from 10% to 90%. The simulated
results meet the expectations according to (10) before the
server is heavily loaded (≤ 70%) in inter-session DiffServ.
The gap between the simulated results and the expected ones
increases as the load increases because the slowdown vari-
ance increases. The gap in intra-session DiffServ scenarios
has similar shapes. Due to the space limitation, we omit the
details in Figure 6(b). ¿From the figures, we can also see
that the optimal allocation scheme can consistently achieve
2D DiffServ at various workloads in the long run.

6. Related Work
E-Commerce applications are session-based. Current re-

search on scalable e-Commerce servers is mainly on work-
load characterization [2] and session-based admission con-
trol [6, 7]. In [7], the authors proposed a group of session-
based admission control strategies to prevent a commercial
Web server from becoming overloaded. The proposed mech-
anisms treat sessions from different clients equally and pro-
vide a fair guarantee of completion for any accepted session,
independent of session length. The performance analysis fo-
cused on the throughput gains in terms of completed ses-
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Figure 6: A long-term view of slowdown of request classes
due to the optimal allocation scheme.

sions instead of completed requests when servers were over-
loaded. In [6], the authors proposed a dynamic weighted fair
scheduling algorithm to control overload in e-Commerce
servers. It avoids processing of requests that belong to ses-
sions that are likely to be aborted in the near future. In con-
trast, the focus of our work is to provision 2D DiffServ when
resource demands of workloads are within resource capacity
of the server. This is complementary to the previous work on
session-based workload characterization and admission con-
trol for overload protection.

The DiffServ provisioning problem was firstly ad-
dressed at the network side. Most previous efforts fo-
cused on queueing-delay differentiation in packet level;
see [8, 14] for examples. At the server side, a primary fo-
cus has been on admission control and priority-based re-
quest scheduling for responsive time differentiation [1, 3].
For example, in [1], the authors addressed strict prior-
ity scheduling strategies for controlling CPU utilization in
Web content hosting servers. QoS was introduced by assign-
ing strict priorities to requests for different contents. The
results showed that DiffServ can be achieved but the qual-
ity spacings among different classes cannot be guaranteed
by this kind of strict priority scheduling. Time-dependent
priority scheduling has been used in achieving propor-
tional queueing-delay DiffServ in network routers. It adjusts
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the priority of a backlogged class according to experi-
enced delays of backlogged packets. Two representative al-
gorithms are WTP [8] and adaptive WTP [14]. This kind of
algorithms can be tailored in achieving queueing-delay dif-
ferentiation at the server side [6, 13].

In comparison with response time, slowdown is a more
accurate performance metric because it is desirable that a
request’s delay be proportional to its processing require-
ment. In [9], Harchol-Balter evaluated on-line job assign-
ment strategies in a distributed server system, where the
workload was heavy-tailed and job size was unknown to
the scheduler. The primary objective was to minimize mean
slowdown of the independent jobs in the distributed system.
In contrast, the objective of this paper is to minimize service
slowdown, a weighted sum of slowdown of the requests in
different sessions and different session states. In [22], the
Zhu, et al. used stretch factor, a variant of slowdown, as
the performance metric for DiffServ in a cluster of Inter-
net servers. Their node partitioning approach was targeted
at stateless Web workload, instead of session-based trans-
actions. The processing rate allocation strategy presented in
this paper not only provides 2D DiffServ, but also lends it-
self to be realizable in various server environments.

The knowledge about customers’ navigation patterns is
important to DiffServ provisioning on e-Commerce servers.
In [15, 16], the authors proposed CBMG to describe cus-
tomers’ navigation patterns in an e-Commerce site. Based
on CBMGs, they presented a family of priority-based re-
source management policies for e-Commerce servers [16].
Priorities of sessions changed dynamically as a function of
state a customer was in and as a function of the amount of
money the shopping cart had accumulated. Resource man-
agement strategies were geared toward maximize a global
system utility function. They cannot control quality spac-
ings among different requests.

7. Conclusions
In this paper, we proposed a 2D DiffServ model with re-

spect to slowdown for session-based e-Commerce applica-
tions. We formulated the model as an optimization problem
of the processing rate allocation with the objective of mini-
mizing service slowdown. We derived the optimal rate allo-
cation scheme and showed that it can guarantee square-root
proportional slowdown differentiation between the requests
in both inter-session and intra-session dimensions. Simula-
tion results shown that the scheme can achieve the objective
consistently in both short and long timescales.
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[16] D. A. Menascé, V. A. F. Almeida, R. Fonseca, and M. A.
Mendes. Resource management policies for E-commerce
servers. In Proc. ACM SIGMETRICS Workshop on Internet
Server Performance, 1999.

[17] J. Nielsen. Why people shop on the Web.
http://www.useit.com/alertbox/990207.html (Date of ac-
cess: July 25, 2003).

[18] A. Riska, E. Smirni, and G. Ciardo. ADAPTLOAD: effec-
tive balancing in clustered Web servers under transient load
conditions. In Proc. IEEE Int’l Conf. on Distributed Comput-
ing Systems (ICDCS), 2002.

[19] W. D. Smith. TPC-W: Benchmarking an Ecommerce solu-
tion. http://www.tpc.org/tpcw (Date of access: Nov 28, 2002).

[20] X. Zhou, J. Wei, and C. Xu. Modeling and analysis of 2D
service differentiaiton on e-Commerce servers. Technical Re-
port, CIC-03-06, Department of Electrical and Computer En-
gineering, Wayne State University, 2003.

[21] X. Zhou, J. Wei, and C. Xu. Processing rate allocation for
proportional slowdown differentiation on Internet servers. In
Proc. IEEE IPDPS, 2004.

[22] H. Zhu, H. Tang, and T. Yang. Demand-driven service dif-
ferentiation for cluster-based network servers. In Proc. IEEE
INFOCOM, pages 679–688, 2001.

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04) 

1063-6927/04 $20.00 © 2004 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


