
CS115
P i i l f C t S iPrinciples of Computer Science

Chapter 9 Inheritance , Polymorphism, and ArrayList

Prof. Joe X. Zhou
Department of Computer Science

CS115 Inheritance&Polymorphism.1 UC. Colorado Springs

Re: Objectives in Strings and Text I/O

° To use the String class to process fixed strings

° To use the Character class to process a single character

° To use the StringBuilder/StringBuffer class to process flexible strings

° To know the differences between the String, StringBuilder, and
StringBuffer classes

° To learn to pass strings to the main method from the command line

° To discover file properties, delete and rename files using the File class

° To write data to a file using the PrintWriter class

° To read data from a file using the Scanner class

CS115 Inheritance&Polymorphism.2 UC. Colorado Springs

To read data from a file using the Scanner class

Objectives in Inheritance and Polymorphism

° To develop a subclass from a superclass through inheritance

° To invoke the superclass’s constructors and methods using the super
keyword

° To override methods in the subclass

° To distinguish differences between overriding and overloading

° To comprehend polymorphism, dynamic binding, and generic
programming

° To describe casting and explain why explicit downcasting is
necessary

° To store, retrieve, and manipulate objects in an ArrayList

CS115 Inheritance&Polymorphism.3 UC. Colorado Springs

p j y

° To restrict access to data and methods using the protected visibility
modifier

° To declare constants, unmodifiable methods, and nonextendable
classes using the final modifier

Inheritance
• What is inheritance? Why we need it?

• Inheritance allows us to derive new classes from existing classes!

• A class C1 inherits from another class C2

public class C1 extends C2 {public class C1 extends C2 {

……
}

• C2: superclass / parent class
• C1: subclass / child class
• C1 inherits accessible data fields and methods from C2, and may also

add new data fields and methods.
• No multiple inheritance in Java

CS115 Inheritance&Polymorphism.4 UC. Colorado Springs

No multiple inheritance in Java

• Inheritance is to model the is-a relationship!
• Circle is a geometric object
• Rectangle is a geometric object
• Rectangle is NOT a circle

Declaring a Subclass
°A subclass extends properties and methods from the superclass.

Add new properties

Add new methods

Override the methods of the superclassp

What cannot be inherited?
constructors, private data fields and methods

CS115 Inheritance&Polymorphism.5 UC. Colorado Springs

Superclasses and Subclasses
 GeometricObject

-color: String
-filled: boolean
-dateCreated: java.util.Date

+GeometricObject()
+getColor(): String

The color of the object (default: white).
Indicates whether the object is filled with a color (default: false).
The date when the object was created.

Creates a GeometricObject.
Returns the color.

+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date
+toString(): String

Sets a new color.
Returns the filled property.
Sets a new filled property.
Returns the dateCreated.
Returns a string representation of this object.

Circle
-radius: double

+Circle()

Rectangle
-width: double
-height: double

GeometricObject

Circle

Rectangle

CS115 Inheritance&Polymorphism.6 UC. Colorado Springs

()
+Circle(radius: double)
+getRadius(): double
+setRadius(radius: double): void
+getArea(): double
+getPerimeter(): double
+getDiameter(): double

+Rectangle()
+Rectangle(width: double, height: double)
+getWidth(): double
+setWidth(width: double): void
+getHeight(): double
+setHeight(height: double): void
+getArea(): double
+getPerimeter(): double

Example: TestCircleRectangle
package chapter9;

public class TestCircleRectangle {
public static void main(String[] args) {

Ci l i l Ci l (1)Circle circle = new Circle(1);
System.out.println("A circle " + circle.toString());
System.out.println(circle.getRadius());
System.out.println("The radius is " + circle.getRadius());
System.out.println("The area is " + circle.getArea());
System.out.println("The diameter is " + circle.getDiameter());

Rectangle rectangle = new Rectangle(2, 4);
System.out.println("\n ");

CS115 Inheritance&Polymorphism.7 UC. Colorado Springs

System.out.println(\n);
System.out.println(" A rectanlge " + rectangle.toString());
System.out.println("The area is " + rectangle.getArea());
System.out.println("The perimeter is " + rectangle.getPerimeter());

}
}

Are superclass’s Constructor Inherited?

• What can not be inherited?
•Private data fields and methods
•constructors

C b l i k l ’ t t ()?• Can a subclass invoke a superclass’s constructor(s)?
• They are invoked explicitly or implicitly.
• Explicitly using the super keyword.
• Implicitly: if the keyword super is not explicitly used, the superclass's
no-arg constructor is automatically invoked

•so, if a class is to be extended, better provide a no-arg constructor

CS115 Inheritance&Polymorphism.8 UC. Colorado Springs

Superclass’s Constructor Is Always Invoked

A constructor may invoke an overloaded constructor or its
superclass’s constructor. If none of them is invoked explicitly,
the compiler puts super() as the first statement in the
constructor. For example, p ,

public A() {

}
is equivalent to public A() {

 super();

}

CS115 Inheritance&Polymorphism.9 UC. Colorado Springs

 public A(double d) {
 // some statements

}
is equivalent to public A(double d) {

 super();
 // some statements

}

Constructor Chaining

public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

•Constructor chaining: constructing an instance of a class invokes all the superclasses’
constructors along the inheritance chain(by default, all no-arg constructors).

}
public Faculty() {
System.out.println(" Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {
this(" Invoke Employee’s overloaded constructor");
System.out.println(" Employee's no-arg constructor is invoked");

}
public Employee(String s) {

CS115 Inheritance&Polymorphism.10 UC. Colorado Springs

p p y g
System.out.println(s);

}
}

class Person {
public Person() {
System.out.println(" Person's no-arg constructor is invoked");

}
}

Trace Code

Impact of a Superclass without no-arg Constructor

Principle: a class must have some constructor, or use its
superclass’ constructor either explicitly or implicitly.

Find out the errors in the program:
public class Apple extends Fruit {
}

class Fruit {
public Fruit(String name) {
System.out.println("Fruit's constructor is invoked");

}
}

CS115 Inheritance&Polymorphism.11 UC. Colorado Springs

If a class is to be extended, you better to provide no-arg constructor!

Examples of Constructor Chaining

class A {
public A() {

What is the printout of running the class, or any problem?

System.out.prinln(“A constructor: Hello”);
}

}

class B extends A {
}

class C {
public static void main(String[] args) {

CS115 Inheritance&Polymorphism.12 UC. Colorado Springs

B b = new b();
}

}

Examples of Constructor Chaining

class A {
public A(int x) {

What is the printout of running the class, or any problem?

System.out.prinln(x);
}

}

class B extends A {
}

class C {
public static void main(String[] args) {

CS115 Inheritance&Polymorphism.13 UC. Colorado Springs

B b = new b();
}

}

Using the Keyword super

° To call a superclass constructor

The keyword super refers to the superclass of the class in which
super appears. This keyword can be used in two ways:

° To call a superclass method: super.method(parameters);

public void printCircle() {
System.out.println(“The circle is created “ + super.getDateCreated());

}
// but a chain of supers is illegal in Java

CS115 Inheritance&Polymorphism.14 UC. Colorado Springs

But when need to call a super.method(), since it must be inherited!

Re: Declaring a Subclass
°A subclass extends properties and methods from the superclass.

Add new properties

Add new methods

Override the methods of the superclassp

CS115 Inheritance&Polymorphism.15 UC. Colorado Springs

Overriding Methods in the Superclass

•A subclass inherits methods from a superclass. Sometimes it is
necessary for the subclass to modify the implementation of a
method defined in the superclass. This is referred to as method
overriding.

public class Circle extends GeometricObject {

// Other methods are omitted

/** Override the toString method defined in GeometricObject */
public String toString() {

return super.toString() + "\nradius is " + radius;
}

CS115 Inheritance&Polymorphism.16 UC. Colorado Springs

}

Q: after overriding, can an instance of Circle invoke toString method
defined in the superclass GeometricObject class? Not anymore!

NOTE

•An instance method can be overridden only if it is accessible.
Can a private method be overriden?

• A private method cannot be overridden, because it is not accessible
outside its own class. If a method defined in a subclass is private in its
superclass, the two methods are completely unrelated.

• Like an instance method, a static method can be inherited.
However, a static method cannot be overridden.

• If a static method defined in the superclass is redefined in a subclass,
the method defined in the superclass is hidden.

CS115 Inheritance&Polymorphism.17 UC. Colorado Springs

Q: What is overloading? Can the overloading be done in a class hierarchy?
What is the difference between overloading and overriding?

Overriding vs. Overloading

 public class Test {
 public static void main(String[] args) {
 A a = new A();
 a.p(10);
 }
}

public class Test {
 public static void main(String[] args) {
 A a = new A();
 a.p(10);
 }
}

class B {
 public void p(int i) {
 }
}

class A extends B {
 // This method overrides the method in B
 public void p(int i) {
 System.out.println(i);
 }
}

class B {
 public void p(int i) {
 }
}

class A extends B {
 // This method overloads the method in B
 public void p(double i) {
 System.out.println(i);
 }
}

CS115 Inheritance&Polymorphism.18 UC. Colorado Springs

• Overriding: same signature and same return type!

• Overloading: same name, but with different signatures to distinguish them!

Q: what are output of the two Test classes above, respectively?

The Object Class
° Every class in Java is inherited from the java.lang.Object class. If no
inheritance is specified when a class is defined, the superclass of the
class is Object.

 public class Circle {

 public class Circle extends Object {

public class Circle {
 ...
}

CS115 Inheritance&Polymorphism.19 UC. Colorado Springs

 ...
}

The toString() method in Object
The toString() method returns a string representation of the object. The
default implementation returns a string consisting of a class name of
which the object is an instance, the at sign (@), and a number
representing this object.

Loan loan = new Loan();();

System.out.println(loan.toString());

The code displays something like Loan@15037e5 . This message is not
very helpful or informative.

Overriding in GeometricObject.java:

bli St i t St i {

CS115 Inheritance&Polymorphism.20 UC. Colorado Springs

public String toString{
return “created on ” + dataCreated + “\ncolor: ” + color

+ “ and filled ” + filled;
}

So, toString method is often to be overridden in the subclasses!

Polymorphism / Dynamic Binding
public class PolymorphismDemo {
public static void main(String[] args)

{
m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}

Method m takes a parameter of the
Object type. You can invoke it with
any object (an instance of a subclass
must be an instance of its superclass)

An object of a subtype can be used
h it t l i i d}

public static void m(Object x) {
System.out.println(x.toString());

}
}

class GraduateStudent extends Student {
}

class Student extends Person {
public String toString() {

wherever its supertype value is required.
This feature is known as polymorphism.

When the method m(Object x) is
executed, the argument x’s toString
method is invoked. x may be an instance
of GraduateStudent, Student, Person, or
Object. Classes GraduateStudent,
Student, Person, and Object have their

CS115 Inheritance&Polymorphism.21 UC. Colorado Springs

return "Student"; //method overriding
}

}

class Person extends Object {
public String toString() {
return "Person"; //method overriding

}
}

own implementation of the toString
method. Which implementation is used
will be determined dynamically by the
JVM at runtime. This capability is
known as dynamic binding.

Polymorphism Demo

Dynamic Binding
Dynamic binding works as follows: Suppose an object o is an instance of classes C1,
C2, ..., Cn-1, and Cn, where C1 is a subclass of C2, C2 is a subclass of C3, ..., and Cn-1 is
a subclass of Cn. That is, Cn is the most general class, and C1 is the most specific
class.

In Java, Cn is the Object class. If o invokes a method p, the JVM searches the
implementation for the method p in C C C and C in this order until it isimplementation for the method p in C1, C2, ..., Cn-1 and Cn, in this order, until it is
found. Once an implementation is found, the search stops and the first-found
implementation is invoked.

Cn Cn-1 C2 C1

Since o is an instance of C1, o is also an

CS115 Inheritance&Polymorphism.22 UC. Colorado Springs

Object instance of C2, C3, …, Cn-1, and Cn

Method Matching vs. Dynamic Binding

° What is the key difference between matching a method in overloading and
dynamic binding?

° Matching a method signature and binding a method implementation are
two issues.

° Method matching deals with method overloading (same name, but different
signatures): the compiler finds a matching method according to parameter
type, number of parameters, and order of the parameters at compilation
time.

° Dynamic binding associated with method overriding: a method may be
implemented in several subclasses (with same signature and return type).
The JVM dynamically binds the implementation of the method at runtime.

CS115 Inheritance&Polymorphism.23 UC. Colorado Springs

So, what is the key benefit of dynamic binding?

Generic Programming
public class PolymorphismDemo {
public static void main(String[] args) {

m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}

° Suppose we have put four classes in four
files. A programmer changes the
GraduateStudent.java implementation as:

class GraduateStudent extends Student {
public String toString() {

return “Graduate Student";
}

public static void m(Object x) {
System.out.println(x.toString());

}
}

class GraduateStudent extends Student {
public String toString(){

return “Graduate Student”;
}

}

class Student extends Person {
public String toString() {

}
}

° Now, we have a new version of
GradateStudent.java with a new toString
method, do we need to recompile all four
classes, or just GraduateStudent class?

° Polymorphism allows methods to be used
generically for a wide range of object
arguments. This is known as generic

i If th d’ t t i

CS115 Inheritance&Polymorphism.24 UC. Colorado Springs

public String toString() {
return "Student";

}
}

class Person extends Object {
public String toString() {

return "Person";
}

}

programming. If a method’s parameter type is
a superclass (e.g., Object), you may pass an
object to this method of any of the parameter’s
subclasses (e.g., Student). When an object
(e.g., a Student object) is used in the method,
the particular implementation of the method of
the object that is invoked (e.g., toString) is
determined dynamically at runtime.

Example: Demonstrating Polymorphism and Casting

This example creates two geometric objects: a circle, and a rectangle,
invokes one displayObject method to display the objects It displays the

What we have learned from Polymorphism?
let a method’s parameter type be as “super” (say Object) as possible!

invokes one displayObject method to display the objects. It displays the
area and diameter if the object is a circle, and displays area if the object
is a rectangle.

Note that you are asked to use one displayObject method only!

CS115 Inheritance&Polymorphism.25 UC. Colorado Springs

Casting Objects
°You have already used the casting operator to convert variables of one
primitive type to another.

° Casting can also be used to convert an object of one class type to
another within an inheritance hierarchy. In the preceding section, the
statement

m(new Student());

assigns the object of Student class (subclass) to a parameter of the
Object class (superclass). This is upcasting. The statement is
equivalent to:

Object o = new Student(); // Implicit casting for upcasting
m(o); // method m() takes object as parameter

CS115 Inheritance&Polymorphism.26 UC. Colorado Springs

The statement Object o = new Student(), known as
implicit casting, is legal because an object of Student
is automatically an object of Object.

Why Explicit Casting Is Necessary for Downcasting?

°Suppose you want to assign the object reference o to a variable of the
Student type using the following statement:

Student b = o;

• A compilation error would occur This is because a Student object is• A compilation error would occur. This is because a Student object is
always an instance of Object, but an Object is not necessarily an
instance of Student.

• Downcasting: cast an object of a superclass to a variable of its
subclass. To tell the compiler that o is a Student object, use an explicit
casting.

• The syntax is similar to the one used for casting among primitive
data types. Enclose the target object type in parentheses and

CS115 Inheritance&Polymorphism.27 UC. Colorado Springs

yp g j yp p
place it before the object to be cast, as follows:

Student b = (Student)o; // Explicit casting

What if o is Not a Student object indeed? Compile error? Runtime error?

° Explicit casting must be used when casting an object from a superclass
to a subclass. This type of casting may NOT always succeed.

° Example: consider the analogy of fruit, apple, and orange with the
Fruit class as the superclass for Apple and Orange. An apple is a fruit, so

Downcasting: from Superclass to Subclass

p pp g pp ,
you can always safely assign an instance of Apple to a variable for Fruit.
However, a fruit is not necessarily an apple, so you have to use explicit
casting to assign an instance of Fruit to a variable of Apple.

Fruit fruit = new Orange();
…..
Apple x = (Apple) fruit;
Orange y = (Orange) fruit;

CS115 Inheritance&Polymorphism.28 UC. Colorado Springs

Orange y = (Orange) fruit;

What if fruit is an orange, but NOT an object of Apple class?
A runtime error ClassCastException occurs for the first casting.

How to ensure an object is an instance of a subclass before casting?
The instanceof operator!

The instanceof Example

Assume that fruit is an instance of GoldenDelicious and orange is an
instance of Orange.

CS115 Inheritance&Polymorphism.29 UC. Colorado Springs

The instanceof Operator

Use the instanceof operator to test whether an object is an instance of
a class:

Object myObject = new Circle();
... // Some lines of code
/** Perform casting if myObject is an instance of Circle */g y j
if (myObject instanceof Circle) {
System.out.println("The circle diameter is " +

((Circle)myObject).getDiameter());
...

}

Why Casting is necessary?

The declared type decides which method to match at compile time

CS115 Inheritance&Polymorphism.30 UC. Colorado Springs

The declared type decides which method to match at compile time.

Why not declare myObject as a Circle type in the first place?

To support polymorphism and generic programming, it is good to declare a
variable with a superclass type which can accept a value of any subclass.

Example: Demonstrating Polymorphism and Casting

package chapter9;

public class TestPolymorphismCasting {
public static void main(String[] args) {

// Declare and initialize two objects
Object object1 = new Circle(1); // implicit casting
Object object2 = new Rectangle(1, 1); // implicit casting

* Object can be replaced by GeometricObject

j j g (,); p g

displayObject(object1); // Display circle and rectangle
displayObject(object2);

}

public static void displayObject(Object object) {/** A generic method for displaying an object */
if (object instanceof Circle) { // to ensure downcasting can be applied

System.out.println("The circle area is " + ((Circle)object).getArea()); // explicit casting
System.out.println("The circle diameter is " + ((Circle)object).getDiameter());

}
else if (object instanceof Rectangle) {

CS115 Inheritance&Polymorphism.31 UC. Colorado Springs

The displayObject method be invoked by passing any instance of Object, an
example of generic programming!

else if (object instanceof Rectangle) {
System.out.println("The rectangle area is " + ((Rectangle)object).getArea());

}
}

} TestPolymorphismCasting

° What if we want to have a scalable array, instead of fixed-size array?

°Java provides ArrayList to store an unlimited number of objects.

°ArrayList methods:

Array vs. The ArrayList Class

CS115 Inheritance&Polymorphism.32 UC. Colorado Springs

The ArrayList Example
public class TestArrayList {
public static void main(String[] args) {

java.util.ArrayList cityList = new java.util.ArrayList();

cityList.add("London");
cityList.add("New York");
cityList.add("Paris");
cityList.add("Toronto");
cityList add("Hong Kong");cityList.add(Hong Kong);
cityList.add("Singapore");
System.out.println("List size? " + cityList.size());
System.out.println("Is Toronto in the list? " + cityList.contains("Toronto"));
System.out.println("The location of New York in the list? " + cityList.indexOf("New York"));
System.out.println("Is the list empty? " + cityList.isEmpty()); // Print false

cityList.add(2, "Beijing"); //arraylist index starts at 0 too.
cityList.remove("Toronto");
cityList.remove(1);
String headCity = (String) list.get(0); // explicit cast is necessary; maybe instanceof can be used as well.
for (int i = 0; i < cityList.size(); i++)

System.out.print(cityList.get(i) + " \n");

CS115 Inheritance&Polymorphism.33 UC. Colorado Springs

// Create a list to store two circles
java.util.ArrayList list = new java.util.ArrayList();
list.add(new Circle(2));
list.add(new Circle(3));

// Display the area of the first circle in the list
System.out.println("The area of the circle? " + ((Circle)list.get(0)).getArea()); //what if no explicit cast here?

}
}

° It is easy to add, insert, and remove elements in a list.

Difference & Similarity between Array and ArrayList

CS115 Inheritance&Polymorphism.34 UC. Colorado Springs

Iteration in ArrayList

° The query iterator() returns an object of type Iterator, which allows
one to traverse through all of the elements of an ArrayList.

// assume myList is an constructed ArrayList list, and
// each element can respond to the toString() method so can be printed.// each element can respond to the toString() method so can be printed.

for (Iterator iter = myList.iterator(); iter.hasNext() ;) {
System.out.println(iter.next());

}

Can be replaced by

for (int i = 0; i < myList.size(); i++) {

CS115 Inheritance&Polymorphism.35 UC. Colorado Springs

System.out.println(myList.get(i));
}

Re: The ArrayList Example
public class TestArrayListIterator {

public static void main(String[] args) {
java.util.ArrayList cityList = new java.util.ArrayList();

cityList.add("London");
cityList.add("New York");
cityList.add("Paris");
cityList.add("Toronto");
cityList.add("Hong Kong");
cityList.add("Singapore");

for (int i = 0; i < cityList.size(); i++)
System.out.print(cityList.get(i) + " \n");

for (Iterator iter = cityList.iterator(); iter.hasNext();)
System out print(iter next() + "\n");

CS115 Inheritance&Polymorphism.36 UC. Colorado Springs

System.out.print(iter.next() + \n);
}

}

TestArrayListIterator

The protected Modifier
° The protected modifier can be applied on data and methods in a

class.

° A protected data or a protected method in a public class can be
accessed by any class in the same package or its subclasses, even
if th b l i diff t kif the subclasses are in a different package.

° private, default, protected, public

private, none (if no modifier is used), protected, public

Visibility increases

CS115 Inheritance&Polymorphism.37 UC. Colorado Springs

Accessibility Summary

Modifier
on members
i l

Accessed
from the

l

Accessed
from the

k

Accessed
from a

b l

Accessed
from a different

kin a class same class same package subclass package

public

protected -

default - -

CS115 Inheritance&Polymorphism.38 UC. Colorado Springs

private - - -

Visibility Modifiers

public class C1 {
 public int x;
 protected int y;
 int z;

public class C2 {
 C1 o = new C1();
 can access o.x;
 can access o.y;

package p1;

 private int u;

 protected void m() {
 }
}

 can access o.z;
 cannot access o.u;

 can invoke o.m();
}

public class C3
 extends C1 {

public class C4
 extends C1 {

package p2;

public class C5 {
 C1 o = new C1();

CS115 Inheritance&Polymorphism.39 UC. Colorado Springs

 can access x;
 can access y;
 can access z;
 cannot access u;

 can invoke m();
}

 can access x;
 can access y;
 cannot access z;
 cannot access u;

 can invoke m();
}

 can access o.x;
 cannot access o.y;
 cannot access o.z;
 cannot access o.u;

 cannot invoke o.m();
}

A Subclass Cannot Weaken the Accessibility

• Accessibility scaling is ok: a subclass may override a protected
method in its superclass and change its visibility to public.

• Accessibility shrinking is not: a subclass cannot weaken the
ibilit f th d d fi d i th laccessibility of a method defined in the superclass.

• For example, if a method is defined as public in the superclass, it must
be defined as public in the subclass.

CS115 Inheritance&Polymorphism.40 UC. Colorado Springs

The final Modifier

° What we have used final modifier for?

° The final variable is a constant:

final static double PI = 3.14159;

° The final class cannot be extended:

final class Math {
...
}

° The final method cannot be overridden by its subclasses.

CS115 Inheritance&Polymorphism.41 UC. Colorado Springs

The equals() Method in the Object Class

° How we know if two variables of some primitive data type have
the same value?

° How we know if the contents of two objects are the same?

° The equals() method compares the contents of two objects° The equals() method compares the contents of two objects
String1.equals(string2);
Char1.equals(char2);

° The default implementation in the Object class compares
whether this reference is equal to (“==”) the object reference
passed, i.e., if the two refer to the same object. But it intends to
be overridden since “==” is too strong!

CS115 Inheritance&Polymorphism.42 UC. Colorado Springs

The equals Method
The equals() method compares the contents of two objects. The default
implementation of the equals method in the Object class is as follows:

public boolean equals(Object obj) {

return (this == obj);

}

The == operator is stronger than the equals method, in that the ==
operator checks whether the two reference variables refer to the
same object. For example, the equals method is overridden in the
Circle class.

public boolean equals(Object o) {
if (o instanceof Circle) {

CS115 Inheritance&Polymorphism.43 UC. Colorado Springs

return radius == ((Circle)o).radius; //cast
}
else

return false;
}

Reading
° Chapter 5 of the textbook: 5.12

° Chapter 9 of the textbook: 9.1 – 9.9, 9.11 – 9.12

° Do review questions

CS115 Inheritance&Polymorphism.44 UC. Colorado Springs

