
CS420/520
Computer Architecture I

OS’s Responsibilities in I/O

Dr. Xiaobo Zhou
Department of Computer Science

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.1

Review: Interfacing Storage Devices to the CPU

• Dependability
• Expandability
• Performance

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.2

A typical interface of I/O devices and an I/O bus to the CPU-memory bus

Operating System Requirements in I/O Operations

° Provide protection to shared I/O resources
• Guarantees that a user’s program can only access the

portions of an I/O device to which the user has rights

° Provides OS abstraction for accessing devices:
• Supply routines that handle low-level device operation

° Handles the interrupts generated by I/O devices

° Provide equitable access to the shared I/O resources
• All user programs must have equal access to the I/O resources

° Schedule accesses in order to enhance system throughput

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.3

OS and I/O Systems Communication Requirements

° The Operating System must be able to prevent:
• The user program from communicating with the I/O device directly

° If user programs could perform I/O directly:
• Protection to the shared I/O resources could not be provided

° Three types of communication are required:
• The OS must be able to give commands to the I/O devices
• The I/O device must be able to notify the OS when the I/O device

has completed an operation or has encountered an error
• Data must be transferred between Memory and an I/O device

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.4

RE: Device Controllers

° I/O devices have components:
• mechanical component
• electronic component

° The electronic component is the device controllerThe electronic component is the device controller
• may be able to handle multiple but identical devices

° Controller's tasks
• convert serial bit stream to block of bytes
• perform error correction as necessary
• make blocks available to main memory

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.5

buffer

Device controller

I/O Device

Standard interface: IDE, SCSI

register

CPU I/O: Special I/O Instructions

° How the CPU communicates with the control registers and the
device data buffers? Two methods are available.

° Method I: Special (assembly) I/O Instructions
• Each control register is assigned an I/O port number (device #)

IN REG, PORT

OUT PORT, REG

• The memory address space and I/O address space are different

IN R0, 4 ; port 4

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.6

MOV R0, 4 ; memory word 4

I/O operations require assembly language programming

CPU I/O: Memory-mapped I/O
° Method II: Memory-mapped I/O

• Each register is assigned a unique memory address to which no
memory is assigned; read/write to addresses are I/O operations

• How it works?

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.7

CPU I/O: Memory-mapped I/O (2)
° Advantages and Disadvantages of Memory-mapped I/O

• Pro: an I/O device driver can be written in C, instead of assembly
• Con: how about caching a control register which says busy? What

if a bus hierarchy used?
• More in Operating Systems• More in Operating Systems

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.8

(a) Separate I/O and memory space; (b) Memory-mapped I/O; (c) Hybrid
(PDP-11) (Pentium)

CPU I/O: Memory-mapped I/O (3)

° PCI bridge chip filters addresses to different buses

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.9

Structure of a large Pentium system

I/O CPU: Device Notifying the CPU

° The OS needs to know when:
• The I/O device has completed an operation
• The I/O operation has encountered an error

° This can be accomplished in two different ways:y
• Polling (Busy Waiting):

- The I/O device put information in a status register
- The CPU periodically or continuously check the status

register

• I/O Interrupt:
- Whenever an I/O device needs attention from the processor,

it interrupts the processor from what it is currently doing.

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.10

p p y g

In real-time systems, a hybrid approach is often used
- Use a clock to periodically interrupt the CPU, at which time

the CPU polls all I/O devices

Data Transfer: Programmed I/O (Busy Waiting)

CPU

Is the
data

ready?
busy wait loop
not an efficient

way to use the CPU
l th d i

IOC

device

Memory
read
data

store
data

yes no

done? no

unless the device
is very fast!

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.11

° Advantage:
• Simple: the processor is totally in control and does all the work

° Disadvantage:
• Polling overhead can consume a lot of CPU time

done? no

yes

Example 1: Overhead of polling

° Assume that the number of clock cycles for a polling operation is 400
and that the processor executes with a 500 MHz clock

° Determine the fraction of CPU time consumed for the following three
cases, assuming that you poll often enough so that no data is ever lost
and assuming that the devices are potentially always busy:

• mouse must be polled 30 times per second (polling rate)
• floppy disk transfers data to CPU in 16-bit units and has a data rate

of 50 KB/sec.
• hard disk transfers data four-word chunks and can transfer at

4MB/sec.

Mouse: cycles/sec for polling: 30 x 400 fraction = 12 000 / 500 M = 0 002%

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.12

Mouse: cycles/sec for polling: 30 x 400 fraction 12 000 / 500 M 0.002%

Floppy disk: cycles/sec for polling: 50 KB/sec / 2 B/polling x 400 = 25 K x 400

Hard disk: cycles/sec for polling: 4 MB/sec / 16B/polling x 400 = 250 K x 400

Data Transfer: Interrupt Driven
add
sub
and
or
nop

user
program(1) I/O

interrupt

(2) save PC

CPU

° Advantage:

read
store
...
rti
memory

(3) interrupt
service addr

interrupt
service
routine(4)

IOC

device

Memory

:

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.13

• User program progress is only halted during actual transfer

° Disadvantage, special hardware is needed to:
• Cause an interrupt (I/O device)
• Detect an interrupt (processor) (EPC, Cause Reg, Controls, etc)
• Save the proper states to resume after the interrupt (processor)

Exception / I/O Interrupt
° Exception and interrupts – events other than branches and jumps that

change the normal flow of instruction execution.
• Exception is within (or outside) the Proc, e.g., overflow
• Interrupt comes from outside (I/O devices)

° An I/O interrupt is just like the exceptions except:An I/O interrupt is just like the exceptions except:
• An I/O interrupt is asynchronous
• Further information needs to be conveyed

° An I/O interrupt is asynchronous with respect to instruction execution:
• I/O interrupt is not associated with any instruction
• I/O interrupt does not prevent any instruction from completion

- You can pick your own convenient point to take an interrupt

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.14

- Recall unpredictability in Pipelining Data Hazards

° I/O interrupt is more complicated than exception:
• Needs to convey the identity of the device generating the interrupt
• Interrupt requests can have different urgencies:

- Interrupt request needs to be prioritized

Multiple Interrupts

° Sequential Order
• Disable interrupts so processor can complete task, and

processor ignores any new interrupt request signals
• Interrupts remain pending until the processor enables interrupts

After interrupt handler routine completes the processor checks• After interrupt handler routine completes, the processor checks
for additional interrupts

° Priorities
• Higher priority interrupts cause lower-priority interrupts to wait
• Causes a lower-priority interrupt handler to be interrupted
• Example when input arrives from communication line, it needs

to be absorbed quickly to make room for more input

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.15

q y p

Interrupt Controller Logic
° Detect and synchronize interrupt requests

• Ignore interrupts that are disabled (masked off)
• Rank the pending interrupt requests
• Create interrupt microsequence address
• Provide select signals for interrupt microsequenceo de se ect s g a s o te upt c oseque ce

Synchronizer
Circuits

Async
interrupt
requests

Interrupt
Priority
Network

Interrupt
micro-

sequence
address
& select

C
PU

:

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.16

Interrupt Mask Reg.

logic

Interrupt Controller

Program Interrupt/Exception Hardware
° Hardware interrupt services:

• Save the PC (or PCs in a pipelined machine)
• Inhibit the interrupt that is being handled
• Branch to interrupt service routine
• A “good thing” about interrupt:• A good thing about interrupt:

- Asynchronous: not associated with a particular instruction
- Pick the most convenient place in the pipeline to handle it

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.17

Step 1: diver tells disk controller the job
Step 2: an interrupt is generated when job finished
Step 3: if interrupt controller is ready, pin to CPU
Step 4: interrupt controller gives the device # to CPU

Example 2: Overhead of Interrupt

° Consider the same hard disk and processor in Example 1 (Polling):
• hard disk transfers data four-word chunks and can transfer at

4MB/sec.
• the processor executes with a 500MHz clock

° Assume that the overhead for each transfer, including the interrupt, is
500 clock cycles

° Determine the fraction of CPU time consumed if the hard disk is only
transferring data 5% of the time.

cycles/sec for interrupt: 4MB/sec / 16B/polling x 500 = 250 K x 500

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.18

Fraction consumed during a transfer: 250 K x 500 / 500 M = 25%

Fraction consumed on average = 25% x 0.5% = 1.25 %

* reminder: it was 20% for polling

Delegating I/O Responsibility from the CPU: DMA

° Direct Memory Access (DMA): CPU

CPU sends a starting address,
direction, and length count
to DMA registers. Then, issues
"start".

° How to reduce the CPU time spent
in transferring data?
• Recall output/input operations

Direct Memory Access (DMA):
• A specialized processor that

transfer data between memory and
I/O device while the CPU goes on
with other tasks.

• External to the CPU
• Act as a maser on the bus
• Transfer blocks of data to or from

memory without CPU intervention

CPU

IOCMemory DMAC

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.19

memory without CPU intervention
• Once done, DMAC interrupts the

CPU
• More sophisticated DMA devices:

scatter/gather, dealing with a list of
separate addresses

device

DMAC provides handshake
signals for Peripheral
Controller, and Memory
Addresses and handshake
signals for Memory.

Direct Memory Access (DMA)
° DMA controller has access to system bus independent of CPU

• A memory address register
• A byte count register
• A control register (direction, transfer unit, and transfer mode)
• Multiple reg sets if multiple transfer at once• Multiple reg. sets if multiple transfer at once

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.20

Operation of a DMA transfer

Example 3: Overhead of DMA

° Consider the same hard disk and processor in Examples 1 and 2:
• hard disk transfers data four-word chunks and can transfer at

4MB/sec.
• the processor executes with a 500MHz clock

° Assume the initial setup of a DMA transfer takes 1000 clock cycles

° the handling of the interrupt at DMA completion requires 500 cycles

° Determine the fraction of CPU time consumed if the hard disk is actively
transferring 100% of the time and the average transfer from the disk is
8KB

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.21

I/O Summary:

° Storage systems and three-stage disk access

° RAID: non redundancy(0), mirroring(1), bit-interleaved parity (3),
distributed block-interleaved parity (5)

° Three types of buses and bus hierarchy:
• Processor-memory buses
• I/O buses
• Backplane buses

° Two methods are used to address I/O device:
• Special I/O instructions
• Memory-mapped I/O

° I/O device notifying the operating system:

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03CS420/520 OS.22

I/O device notifying the operating system:
• Polling: it can waste a lot of processor time
• I/O interrupt: similar to exception except it is asynchronous

° Delegating I/O responsibility from the CPU
• Direct memory access (DMA)

