
CS4200/5200
C t A hit t IComputer Architecture I

Instruction Set Principles

Dr. Xiaobo Zhou
Department of Computer Science

CS420/520 Lec 4 ISA.1 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Review: MIPS Addressing Modes/Instruction Formats

register
I-format:

op rs rt rdRegister (direct) sht fun

R-format: 6 5 5 5 5 6

immedop rs rt

register

Base+offset

+

Memory

immedop rs rtImmediate

immedop rs rt
PC-relative

Memory

o at:

displacement

6 5 5 16

CS420/520 Lec 4 ISA.2 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

PC +

y

J-format:

op addr. Memory
6 26

Review: Instruction Set Design

Software

instruction set

Hardware

CS420/520 Lec 4 ISA.3 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

An instruction is a binary code, which specifies a basic
operation (e.g. add, subtract, and, or) for the computer

• Operation Code: defines the operation type
• Operands: operation source and destination

Basic Issues in Instruction Set Design

--- What operations (and how many) should be provided

LD/ST/INC/BRN sufficient to encode any computation
But not useful because programs too long!

--- How (and how many) operands are specified

Most operations are dyadic (eg, A <- B + C)
Some are monadic (eg, A <- ~B)

--- How to encode these into consistent instruction formats

Instructions should be multiples of basic data/address widths

Typical instruction set:

° 32 bit word

CS420/520 Lec 4 ISA.4 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

° 32 bit word
° basic operand addresses are 32 bits long
° basic operands, like integers, are 32 bits long
° in general case, instruction could reference 3 operands (A := B + C)

challenge: encode operations in a small number of bits!

Execution Cycle

Instruction

Fetch

Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Decode

Operand

Fetch

Execute

Locate and obtain operand data

Compute result value or status

CS420/520 Lec 4 ISA.5 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Result

Store

Next

Instruction

Deposit results in storage for later use

Determine successor instruction

Parallelism is important!

What Must be Specified?

Instruction

Fetch

Instruction

° Instruction Format or Encoding

– how is it decoded?

° Location of operands and result

where other than memory?
Decode

Operand

Fetch

Execute

– where other than memory?

– how many explicit operands?

– how are memory operands located?

– which can or cannot be in memory?

° Data type and Size

° Operations

– what are supported

CS420/520 Lec 4 ISA.6 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Result

Store

Next

Instruction

° Successor instruction

– jumps, conditions, branches

- fetch-decode-execute is implicit!

Basic ISA Classes

Accumulator: (earliest machines)

1 address load/store A accmem[A]

1 address add A acc acc + mem[A]

Stack: (HP calculator, Java virtual machines)Stack: (HP calculator, Java virtual machines)

0 address add tos tos + next

Register (register-Memory): (e.g. Intel 80x86, Motorola 68xxx)

2 address add A B EA(A) EA(A) + EA(B)

3 address add A B C EA(A) EA(B) + EA(C)

Register (Load/Store): (e.g. SPARC, MIPS, PowerPC)

CS420/520 Lec 4 ISA.7 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

3 address add Ra Rb Rc Ra Rb + Rc

load Ra Rb Ra mem[Rb]

store Ra Rb mem[Rb] Ra

Memory – to - memory: no more shipping today

Classifying ISAs

1. Dimension 1: Where other than memory?

– Accumulator

– Stack

A set of registers– A set of registers

2. Naming Implicitly or explicitly?

• Implicitly:

• Accumulator

• Stack; operands identified by TOS

• Explicitly

CS420/520 Lec 4 ISA.8 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Explicitly

• General-purpose register architectures

• Either registers or memory locations

Operand locations for the ISAs

CS420/520 Lec 4 ISA.9 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

lighter shade: inputs; dark shade: result

Comparing Instructions

Comparing Number of Instructions

° Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator Register Register

(register-memory) (load-store)

Push A Load A Load R1,A Load R1,A

Push B Add B Add R1,B Load R2,B

Add Store C Store C, R1 Add R3,R1,R2

Pop C Store C,R3

CS420/520 Lec 4 ISA.10 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Number of Instructions? Cycles per instruction?

S[tos - 4] = S[tos] op S[tos - 4];
tos = tos – 4;

Add R3, R1, B
Store R3, C

General Purpose Registers Dominate

°
Since 1975 all machines use general purpose registers
(Java Virtual Machine adopts Stack architecture)

° Advantages of registers

• registers are faster than memory

• registers are easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order
vs. stack (S[tos-4] = S[tos] op S[tos-4]; tos = tos – 4)

• registers can hold variables

- memory traffic is reduced, so program is sped up
(since registers are faster than memory)

- code density improves (since register named with fewer bits
than memory location)

CS420/520 Lec 4 ISA.11 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

t a e o y ocat o)

• registers are efficient in pipelining

• how many registers are sufficient?
• Compilers reserve some for expression evaluation, parameter

passing, and the remainder to hold variables.

Examples of Register Usage

Number of memory addresses per typical ALU instruction

Maximum number of operands per typical ALU instruction

Examples

0 3 Alpha, ARM, SPARC, MIPS, Power PC. TM32

1 2/3 IBM 360/370, Intel 80x86, Motorola 68000

2 2 VAX (also has 3-operand formats)

Type of architecture

L-S

R-M

M-M

CS420/520 Lec 4 ISA.12 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

3 3 VAX (also has 2-operand formats)M-M

Typical combinations of memory operands and total operands per instruction

Example:

In VAX: ADDL (R9), (R10), (R11)
mem[R9] <-- mem[R10] + mem[R11]

VAX: richest of addressing modes
f t t i ti dd ifewest restrictions on memory addressing

In MIPS: lw R1, (R10); load a word
lw R2, (R11)
add R3, R1, R2; R3 <-- R1+R2
sw R3, (R9); store a word

CS420/520 Lec 4 ISA.13 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Pros and Cons of Number Memory Operands/Operands

° Register–register: 0 memory operands/instr, 3 (register) operands/instr

+ Simple, fixed-length instruction encoding. Simple code generation
model. Instructions take similar numbers of clocks to execute

– Higher instruction count than architectures with memory
references in instructions. Some instructions are short and bit

di b t f lencoding may be wasteful.

° Register–memory (1,2)

+ Data can be accessed without loading first. Instruction format
tends to be easy to encode and yields good density.

– Operands are not equivalent since a source operand in a binary
operation is destroyed. Encoding a register number and a memory
address in each instruction may restrict the number of registers.
Clocks per instruction varies by operand location.

CS420/520 Lec 4 ISA.14 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

p y p

° Memory–memory (2,2) or (3,3)

+ Most compact. Doesn’t waste registers for temporaries.

– Large variation in instruction size, especially for three-operand
instructions. Also, large variation in work per instruction. Memory
accesses create memory bottleneck.

Memory Addressing

Processor
Memory:

Continuous Linear
Address Space?

Since 1980 almost every machine uses addresses to level of 8-bits (byte)

2 questions for design of ISA:

• Since could read a 32-bit word as four loads of bytes from

Address Space?

CS420/520 Lec 4 ISA.15 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

y
sequential byte addresses or as one load word from a single byte
address,

How do byte addresses map onto words?

Can a word be placed on any byte boundary?

Alignment Restriction

• Alignment: require that objects fall on address that is
multiple of their size

Alignment issue:
access objects larger than a byte must be aligned

multiple of their size

• An access to an object of size s bytes at byte address A is
aligned if A Mod s = 0

• Alignment leads to faster data transfers

• Example:

CS420/520 Lec 4 ISA.16 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Addressing Objects

Big Endian: address of most significant (MSB) = word address
IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

Little Endian: address of least significant (LSB) = word address
Intel 80x86, DEC Vax

MSB

LSB

little endian word 0:3 2 1 0

0 1 2 3
big endian word 0:

CS420/520 Lec 4 ISA.17 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

MSB
g

BIG Endian versus Little Endian

Example 1: Memory layout of a number #ABCDEFGH:
SW $4(#ABCDEFGH), 1000($0)

In Big Endian: GH
EF

1003
1002

CD
AB

In Little Endian: AB
CD
EF
GH

1003
1002
1001
1000

1001
1000 increasing

byte
address

CS420/520 Lec 4 ISA.18 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Example 2: Memory layout of a number #FF00H

How about load?

Addressing Modes

Addressing mode Example Meaning

Register Add R4,R3 R4R4+R3

Immediate Add R4,#3 R4 R4+3

Displacement Add R4,100(R1) R4 R4+Mem[100+R1]

Register indirect Add R4,(R1) R4 R4+Mem[R1]

Indexed Add R3,(R1+R2) R3 R3+Mem[R1+R2]

Direct or absolute Add R1,(1001) R1 R1+Mem[1001]

Memory indirect Add R1 @(R3) R1 R1+Mem[Mem[R3]]

CS420/520 Lec 4 ISA.19 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Memory indirect Add R1,@(R3) R1 R1+Mem[Mem[R3]]

Auto-increment Add R1,(R2)+ R1 R1+Mem[R2]; R2 R2+d

Auto-decrement Add R1,–(R2) R2 R2–d; R1 R1+Mem[R2]

Scaled Add R1,100(R2)[R3] R1  R1+Mem[100+R2+R3*d]

Addressing Mode Illustrations

CS420/520 Lec 4 ISA.20 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Addressing Mode:

• Addressing modes have the ability to significantly reduce
instruction counts

• They also add to the complexity of building a machine, and
may increase the CPI of computers

• The usage of various addressing modes is important in
helping the architect choose what to include

CS420/520 Lec 4 ISA.21 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Addressing Mode Usage (VAX)

SPEC89

Avg. 7%

Avg. 3%

g

Avg. 13%

CS420/520 Lec 4 ISA.22 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

• important addressing modes: Displacement, Immediate, Register Indirect

What it tells?

Displacement Address Size (Alpha)

• Values are widely distributed
• X-axis is in power of 2
• 1% of address size > 16-bits

CS420/520 Lec 4 ISA.23 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

• displacement size should be 12-16 bits, capturing 75%-99%
What it tells?

Why important? directly affects the instruction length

Immediate Frequency (Alpha)

CS420/520 Lec 4 ISA.24 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

What it tells?
• About one quarter of data transfers and ALU operations have an
immediate Operand.

The distribution of Immediate Size (Alpha)

• Values are widely distributed
• X-axis is in power of 2
• 20% of size > 16-bits

CS420/520 Lec 4 ISA.25 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

What it tells?
• immediate size should be 8-16 bits, capturing 50%-80%

Why important? affects the instruction length too

Summary of Addressing Modes

• Data Addressing modes that are important:
Displacement, Immediate, Register Indirect

• Displacement size should be 12 to 16 bits

• Immediate size should be 8 to 16 bits

CS420/520 Lec 4 ISA.26 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Data Types and Sizes

Bit: 0, 1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 bits is a byte

16 bits is a half-word
32 bits is a word

Character:
ASCII 7 bit code
EBCDIC 8 bit code (IBM)
UNICODE 16 bit code (Java)

Decimal:
digits 0-9 encoded as 0000b thru 1001b
two decimal digits packed per 8 bit byte

Integers:
Sign & Magnitude: 0X vs 1X Positive #'s same in all

CS420/520 Lec 4 ISA.27 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Sign & Magnitude: 0X vs. 1X
1's Complement: 0X vs. 1(~X)
2's Complement: 0X vs. (1's comp) + 1

Floating Point:
Single Precision
Double Precision
Extended Precision

Positive # s same in all
First 2 have two zeros
Last one usually chosen

How many +/- sign's?
Where is decimal pt?
How are +/- exponents

represented?

M x R
E

exponent

basemantissa

Operand Size Usage (on 64-bit addresses)

CS420/520 Lec 4 ISA.28 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

•Support these data sizes and types:
8-bit, 16-bit, 32-bit integers and
32-bit and 64-bit IEEE 754 floating point numbers

Typical Operations

Data Movement Load (from memory)
Store (to memory)
memory-to-memory move
register-to-register move
input (from I/O device)
output (to I/O device)
push pop (to/from stack)push, pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
Add, Subtract, Multiply, Divide

Logical not, and, or, set, clear

Shift shift left/right, rotate left/right

Control (Jump/Branch) unconditional conditional

CS420/520 Lec 4 ISA.29 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Control (Jump/Branch) unconditional, conditional

Subroutine Linkage call, return

Interrupt trap, return

Synchronization test & set (atomic r-m-w)

String move, compare, search, translate

Top 10 80x86 Instructions

° Rank instruction Integer Average Percent total executed

1 load 22%

2 conditional branch 20%

3 compare 16%3 compare 16%

4 store 12%

5 add 8%

6 and 6%

7 sub 5%

8 move register-register 4%

9 call 1%

CS420/520 Lec 4 ISA.30 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

10 return 1%

Total 96%

° Simple instructions dominate instruction frequency

Most Popular MIPS Instructions

CS420/520 Lec 4 ISA.31 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Left: SPECint2000 (96%) Right: SPECfp2000 (97%)

Operation Summary

• Support these simple instructions, since they
will dominate the number of instructions executed:

load,
store,
add,
subtract,
move register-register,
and,
shift,
compare equal, compare not equal,

CS420/520 Lec 4 ISA.32 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

p q , p q ,
branch (with a PC-relative address at least 8-bits long),
jump,
call,
return;

Instructions for Control Flow (Alpha)

CS420/520 Lec 4 ISA.33 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

•Conditional branches; jumps; procedure call/return

Branch Distances (Alpha)

• Branch distances in terms of number of instructions

CS420/520 Lec 4 ISA.34 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

What it tells?
• Most branches are to targets that can be encoded in 4-8 bits; short
displacement fields often suffice for branches;
Important if coding density is the issue!

Branch distances in terms of number of instructions
Between the target and the branch instruction.

Conditional Branch Options

CS420/520 Lec 4 ISA.35 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Frequency of Compares (Alpha)

What it tells?
Less than (or equal)
dominates

CS420/520 Lec 4 ISA.36 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Encoding an Instruction Set

• Balance several competing forces

• The desire to have as many registers and addressing modes

• The impact of the size of the registers and addressing mode
fields on the average instruction size and hence the average g g
program size

• A desire to have instructions encoded into lengths that will
be easy to handle in a pipelined implementation; many
desktop and server architects have chosen to use a
fixed-length instruction to gain implementation benefits
while sacrificing average code size

CS420/520 Lec 4 ISA.37 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Example: add EAX, 1000 (EBX)

1 + 1 + 4 = 6 bytes (in 80x86 32-bit mode)

Generic Examples of Instruction Formats

low avg. code size -- best when many addressing modes but poor perf.

easy decoding for compiler, easy pipelining but wasted bits in instr.

Tradeoff: multiple of bytes,
instead of arbitrary bit length

CS420/520 Lec 4 ISA.38 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Instruction Formats and Reduced Code Size

• If code size is most important,
use variable length instructions

• If performance is most important,
use fixed length instructions – ease of decoding

• Recent embedded machines (ARM, MIPS) added
optional mode to execute subset of 16-bit wide
instructions (Thumb, MIPS16), which both claim a
code size reduction of up to 40%

CS420/520 Lec 4 ISA.39 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

• Some architectures actually exploring on-the-fly
hardware decompression for more density (IBM).

Instruction Set Architectures

• Class of ISA

• Memory addressing

• Addressing modes

T d i f d• Types and sizes of operands

• Operations

• Control flow instructions

• Encoding an ISA

CS420/520 Lec 4 ISA.40 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Reduced Instruction Set Computer (RISC)

Key elements

• A large number of general-purpose registers, and/or the
use of compiler technology to optimize register usage

• A limited and simple instruction setted a d s p e st uct o set

• An emphasis on optimizing the instruction set

– A single instruction size (typically 4 bytes)

– Register-to-register operations

» No operations that combines load/store with arithmetic

– A small number of data addressing modes

– Simple addressing modes

CS420/520 Lec 4 ISA.41 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

– Simple addressing modes

» No indirect addressing

– Simple instruction formats

CISC and RISC Characteristics

CS420/520 Lec 4 ISA.42 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

CISC Program size vs. RISC program size

•Is it certain that a CISC program will be smaller than a
corresponding RISC program?

• in many cases, a CISC program, expressed in symbolic
machine language may be shorter (fewer instructions)machine language, may be shorter (fewer instructions)

• but the number of bits of memory occupied may not be
noticeably smaller

CS420/520 Lec 4 ISA.43 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Machine Examples: Address & Registers

Intel 8086 2 x 8 bit bytes
AX, BX, CX, DX
SP, BP, SI, DI
CS, SS, DS
IP, Flags

acc, index, count
stack, string
code,stack,data segment

20

VAX 11

MC 68000

2 x 8 bit bytes
16 x 32 bit GPRs

2 x 8 bit bytes
8 x 32 bit GPRs
7 x 32 bit addr reg
1 x 32 bit SP
1 32 bit PC

r15-- program counter
r14-- stack pointer
r13-- frame pointer
r12-- argument ptr

32

24

CS420/520 Lec 4 ISA.44 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

MIPS

1 x 32 bit PC

2 x 8 bit bytes
32 x 32 bit GPRs
32 x 32 bit FPRs
HI, LO, PC

32

Concluding Remarks

• Changes in 1990s
– Address size doubles

» Instruction sets: 32-bit addresses  64-bit addresses

» Registers: 32-bit  64-bit

O ti i ti f h f– Optimization of cache performance
» Pre-fetch instructions were added (Memory Hierarchy)

– Support for Multimedia
» Instruction sets extended for MM and DSP applications

• Trends in ISA design
– Long instruction words

» More instruction level parallelism (Pipelining)

CS420/520 Lec 4 ISA.45 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

» More instruction-level parallelism (Pipelining)

– Blending general-purpose and DSP architectures

– 80x86 emulation
» Given the popularity of software for 80x86 architecture, see if

changes to the instruction sets can improve performance, cost or
power when emulating the 80x86 architecture

Lecture Summary: ISA

° Use general purpose registers with a load-store architecture;

° Support these addressing modes: displacement (with an address offset
size of 12 to 16 bits), immediate (size 8 to 16 bits), and register deferred;

° Support these simple instructions, since they will dominate the number
of instructions executed: load, store, add, subtract, move register-
register, and, shift, compare equal, compare not equal, branch (with a
PC-relative address at least 8-bits long), jump, call, and return;

° Support these data sizes and types: 8-bit, 16-bit, 32-bit integers and 64-
bit IEEE 754 floating point numbers;

° Use fixed instruction encoding if interested in performance and use
variable instruction encoding if interested in code size;

CS420/520 Lec 4 ISA.46 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

variable instruction encoding if interested in code size;

° Provide at least 16 general purpose registers plus separate floating-
point registers, be sure all addressing modes apply to all data transfer
instructions, and aim for a minimalist instruction set.

Reading

• Reading:

CO4: Chapter 2 (MIPS)

CA 5: Appendix A (ISA)

• Preview:

CO4: Chapter 4 (The Processor)

CS420/520 Lec 4 ISA.47 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Links to Information Assurance related Websites

• National Security Agency: http://www.nsa.gov/

• NIST, Computer Security Division, Computer Security Resource
Center: http://csrc.nist.gov/

• Common Criteria for Information Technology Security Evaluation:
http://www.commoncriteriaportal.org/

• U.S. Department of Homeland Security: http://www.dhs.gov/

• ITU (International Telecommunication Union: http://www.itu.int/

• Internet Society (ISOC): http://www.isoc.org/

• The Internet Engineering Task Force (IETF): http://www.ietf.org/

• Internet Architecture Board (IAB): http://www.iab.org/

• International Organization for Standardization (ISO):
http://www.iso.org

CS420/520 Lec 4 ISA.48 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

• IEEE Computer Society: http://www.computer.org

• Association for Computing Machinery (ACM): http://www.acm.org/

• USENIX: The Advanced Computing Systems Association:
http://www.usenix.org/

Homework 2, due 1 week later

• Re-do (optional, no extra credits) all examples in
MIPS ISA (refer to CO 4, Chapter 2)

• Homework; see course Web site• Homework; see course Web site

• Reading assignment; see course Web site

CS420/520 Lec 4 ISA.49 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

