
CS4200/5200
C t A hit t IComputer Architecture I

Lecture 2: Quantitative Performance Evaluation

Dr. Xiaobo Zhou

Department of Computer Science 

CS420/520 Lec2.1 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Review: What is “Computer Architecture”?

Compiler

Operating
System

Application

Firmware

I/O systemInstr. Set Proc.

Compiler

Digital Design
Circuit Design

Instruction Set
Architecture

Firmware

Datapath & Control 

Layout

CS420/520 Lec2.2 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Coordination of many levels of abstraction

° Under a rapidly changing set of forces

° Design, Measurement, and Evaluation



Re: Summary of Lecture 1

° Trends in Technology and Performance

° Computer Architecture: ISA + Organization + Hardware

° ISA: RISC vs. CISC

° All computers consist of five components

• Processor: (1) datapath and (2) control

• (3) Memory

• (4) Input devices and (5) Output devices

° Not all “memory” are created equally

• Cache: fast (expensive) memory are placed closer to the processor

M i l i h

CS420/520 Lec2.3 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• Main memory: less expensive memory--we can have more

° Input and output (I/O) devices has the messiest organization

• Wide range of speed: graphics vs. keyboard

• Wide range of requirements: speed, standard, cost ... etc.

• Least amount of research (so far) 

Where Are We ??

Single/multicycle
Datapaths

Performance/Cost!
instruction set

Software

Hardware

CS420/520

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)

1

10

100

1000

19
8

0 19
8

1 19
8

3 19
8

4 19
8

5 19
8

6 19
8

7 19
8

8 19
8

9 19
9

0 19
9

1 19
9

2 19
9

3 19
9

4 19
9

5 19
9

6 19
9

7 19
9

8 19
9

9 20
0

0

DRAM

CPU

19
8

2

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

Time

“Moore’s Law”

IFetchDcd Exc Mem WB

IFetchDcd Exec Mem WB

IFetchDcd Exec Mem WB

CS420/520 Lec2.4 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03


IFetchDcd Exec Mem WB

Pipelining

Memory Systems

I/O



Cost: Chip Manufacturing Process

° Silicon (semiconductor) can be transformed with materials to

• Conductors, insulators, on/off switch (transistor)

° VLSI (very large-scale integrated circuit)

• Millions of combinations, manufactured in a single package

• Critical to the cost of the chips and machines

Silicon Ingot             Slicer                                        processing steps

Blank wafers

yield

CS420/520 Lec2.5 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Patterned wafers  

Dicer    

Tested 
dies  

Packaged
dies/bonding  

Tested
packaged
dies  

shipping

yield

Real World Examples

CS420/520 Lec2.6 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Left: an AMD Opteron microprocessor die

° Right: an 300mm wafer contains 117 AMD Opteron chips



Die Costs

Die cost  =                Wafer cost

Dies per Wafer  *  Die yield

Dies per wafer   =   * ( Wafer diam /  2)2 –  * Wafer diam  – Test dies  Wafer Areap ( _ ) _

Die Area  2 * Die Area Die Area 

CS420/520 Lec2.7 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

1) Defects per unit area is a measure of the random manufacturing 
defects. In 2010, the value was typically 0.016 to 0.057 defects per cm^2.
2) N is a parameter called the process-complexity factor, a measure of 
manufacturing difficulty. In 2010, N ranges from 11. to 15.5.

Die Yield  =                          Wafer yield (1)

(1 + Defects_per_unit_area  * Die area)

Example 1: Dies per Wafer

Find the maximum number of dies per 30cm-diameter 
wafer for a die that is 1.5 cm on a side.

Answer:
Dies per wafer  wafer area / die Area

die area = 1.5 cm * 1.5 cm = 2.25 cm^2

wafer area =  * (30/2)^2 = 706.9 cm^2

Dies per wafer = 706 9 / 2 25 = 314

CS420/520 Lec2.8 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Dies per wafer = 706.9 / 2.25 = 314

More accurately: 

Dies per wafer = 706.9 / 2.25 – 94.2 / 1.41 = 270



Example 2: Die Yield

Find the die yield for dies that are 1.5 cm on a side and 
1.0 cm on a side, respectively. Assuming a defect density 
of 0.031 per cm^2 and parameter N = 13.5. For simplicity, 
the wafer yield is assumed to be 100%

Answer:

the wafer yield is assumed to be 100%. 

Wafer yield
Die yield =

(1 + Defects_per_unit_area  * Die area)

CS420/520 Lec2.9 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

The die areas are 2.25 cm^2 and 1.0 cm^2, respectively.

For the larger die, the yield is (1+ 0.031 x 2.25)^13.5 = 0.4

For the smaller die, the yield is (1+0.031 x 1.0)^13.5 = 0.66

IC cost  =  Die cost +   Testing cost   +   Packaging cost

Final test yield

Integrated Circuit Costs

Chip Die Package Test & Total
cost cost Assembly

386DX $4 $1 $4 $9 

486DX2 $12 $11 $12 $35 

PowerPC 601 $53 $3 $21 $77 

HP PA 7100 $73 $35 $16 $124 

DEC Alpha $149 $30 $23 $202

CS420/520 Lec2.10 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

DEC Alpha $149 $30 $23 $202 

SuperSPARC $272 $20 $34 $326 

Pentium $417 $19 $37 $473 



Re: Processor Performance (SPEC)

Move to multi-processor

RISC
RISC: ILP + Cache

CS420/520 Lec2.11 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Price of Six Generations of DRAMs

CS420/520 Lec2.12 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03



Price of an Intel Pentium III

CS420/520 Lec2.13 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Performance: Two notions of “performance”

Plane

Boeing 747

Speed

610 mph

DC to Paris

6.5 hours

Passengers

470

Throughput 
(pmph)

286,700

° Time to do the task (Execution Time)

BAD/Sud 
Concorde 1350 mph3 hours 132 178,200

Which has higher performance?

CS420/520 Lec2.14 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Time to do the task  (Execution Time)

– execution time, response time, latency

° Tasks per day, hour, week, sec, ns. .. (Performance)

– throughput, bandwidth

Response time and throughput often are in opposition



Definitions of Performance 

° Performance is in units of things-per-second

• bigger is better

° If we are primarily concerned with response time

• performance(x) =   1               ( )
execution_time(x)

" X is n times faster than Y"  means

Performance(X)  = Execution_time (Y)

Performance(Y)    Execution_time (X)N =

CS420/520 Lec2.15 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Time of Concorde vs. Boeing 747?
Concord is 1350 mph / 610 mph = 2.2 times faster

= 6.5 hours / 3 hours

We will focus primarily on execution time for a single job

Relating Processor Metrics

° CPU execution time = CPU clock cycles/pgm X clock cycle time

° or CPU execution time = CPU clock cycles/pgm ÷ clock rate

° CPU clock cycles/pgm = Instructions/pgm X avg. clock cycles per instr.

° or CPI = CPU clock cycles/pgm ÷ Instructions/pgm 

° Different instructions may take different amounts of time (and/or 
different # of clock cycles) depending on what they do, CPI is an 
average of all the instructions executed in program

° CPI tells us something about the Instruction Set Architecture, the 
Implementation of that architecture (since the instruction count 
required for a program is the same)

CS420/520 Lec2.16 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

required for a program is the same)

° IPC = # instructions per clock cycle, the inverse of CPI



Aspects of CPU Performance

CPU time =  Seconds = Instructions  x  Cycles       x   Seconds

Program Program          Instruction       Cycle

instr. count CPI clock rate

Program X X

Compiler X X

Instr. Set. X X                        

CS420/520 Lec2.17 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Organization X X

Technology X

Organizational Trade-offs

CPU time =  Seconds = Instructions  x  Cycles       x   Seconds

Program Program          Instruction       Cycle

Compiler

Programming 
Language

Application

ISA Instruction Mix

Unfortunately, it is hard to change one 
parameter in complete isolation from 
others because the basic technologies 
involved in changing each component 
are inter-dependent!!!

CS420/520 Lec2.18 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Datapath
Control

Transistors Wires Pins

ISA

Function Units

Instruction Mix

Cycle Time

CPI



Example: Clock Rate

Our favorite program runs in 10 sec on machine 
A, which has a 400MHz clock. We are trying to 
design a machine B with faster clock rate so as g
to reduce the execution time to 6 sec. 

The increase of clock rate will affect the rest of 
the CPU design, causing B to require 1.2 times
as many clock cycles as machine A for this 

Wh t l k t h ld b ?

CS420/520 Lec2.19 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

program. What clock rate should be?

Answer:

CPU execution time = CPU clock cycles/pgm ÷ clock rate

CPU time A = CPU clock cycle A / clock rate A

==> CPU clock cycle A = 10 sec x 400 x 10^6

CPU time B = CPU clock cycle B / Clock rate B 

CS420/520 Lec2.20 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Clock rate B = CPU clock cycle B / CPU time B
= 1.2*CPU clock cycle A / CPU time B
= 1.2*4000*10^6 / 6 = 800 MHz



CPI: Average Cycles per Instruction

CPU time =  Seconds = Instructions  x  Cycles       x   Seconds

Program Program          Instruction       Cycle

CPU time = ClockCycleTime *   CPI    *  I
i  = 1

n

i i

"i t ti f "

CPI = (CPU Time * Clock Rate) / Instruction Count 
= Clock Cycles of a program / Instruction Count

CS420/520 Lec2.21 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

"instruction frequency"

CPI  =  CPI    *    F          where   F     =              I  
i  = 1

n

i i i i

Instruction Count

Example: CPI

Base Machine (Load/Store) and Instruction frequencies 
in the execution of a program:

Op Freq Cycles (per instruction)

ALU 40% 1

Load 30% 2

Store 20% 2

Branch 10% 2

Question:  What is the average CPI of the program on the machine

CS420/520 Lec2.22 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Answer:

CPI  =  CPI    *    F          where   F     =              I  

n

i  = 1
i i i i

Instruction Count



Example: Performance Comparison

Suppose we have two implementations of the same 
instruction set. Machine A has a clock cycle time of
10 ns and an average CPI of 2.0 for some program.

Machine B has a clock cycle time of 20 ns and an
average CPI of 1.2 for the same program and compiler.

Which is faster? And by how much?

Let I denote the number of instructions of the program

CS420/520 Lec2.23 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

p g
CPU time A = I * 2.0* 10 = 20 I
CPU time B = I * 1.2 *20 = 24 I

Machine A is 1.2 times faster than B

Marketing Metrics

MIPS = Instruction Count / (ExTime * 10^6)

= Clock Rate / (CPI * 10^6)

•Million Instructions Per Seconds

Three problems with using MIPS as a measure

•programs with different instruction mixes? no single MIPS!

•machines with different instruction sets? IC varies!

•uncorrelated with performance! Perhaps, inversely.

CS420/520 Lec2.24 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

MFLOP/S    = FP Operations / ExTime * 10^6

•Million Floating-point Operations Per Second

•machine and program dependent



Metrics of Performance

Programming 
Language

Application
Transactions per hour

Useful Operations per second

Compiler

a guage

Datapath
Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second – MIPS
(millions) of (F.P.) operations per second – MFLOP/s

Cycles per second (clock rate)

CS420/520 Lec2.25 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Transistors Wires Pins

Each metric has a place and a purpose, and each can be misused

Example: CPI & MIPS

Assume we build an optimizing compiler for the load/store
machine. The compiler discards 50% of the ALU instructions.

1) What is the CPI_opt ?

Answer: MIPS = Instruction Count / Time * 10^6

) _ p
2) Ignoring system issues and assuming a 20 ns clock 

cycle time (50 MHz clock rate). What is the MIPS rating
for optimized code versus un-optimized code? Does the 
MIPS rating agree with the rating of execution time?

CS420/520 Lec2.26 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

= Clock Rate / CPI * 10^6

CPU ExTime =  Instructions  x    Cycles       x   Seconds
----------------------------------------- ------------------------------- ------------------------------

Program          Instruction        Cycle



Why Do Benchmarks?

° How we evaluate differences

• Different systems

• Changes to a single system

° Benchmarks are programs specially chosen to measure° Benchmarks are programs specially chosen to measure 
performance.

• Benchmarks should represent large class of important 
programs (say engineering environments)

• Improving benchmark performance should help many 
programs

° For better or worse, benchmarks shape a field

• Good ones accelerate progress

CS420/520 Lec2.27 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• Good ones accelerate progress

• Bad benchmarks hurt progress

° The best type of programs to use for benchmarks are real 
applications.

Programs to Evaluate Processor Performance

° Synthetic Benchmarks

• artificial programs, attempt to match the characteristics of a 
large set of real programs

• e.g., Whetstone, dhrystone

° (Toy) Benchmarks(Toy) Benchmarks

• execute in a small code  segment, usually, 10-100 line

• e.g.,: sieve, puzzle, quicksort

° Kernel benchmarks

• small, time-intensive pieces extracted from real programs

• primarily for benchmarking high-end machines, 
supercomputers

CS420/520 Lec2.28 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• e.g., Livermore loops, linpack

° Modified applications

° Real applications

• e.g., gcc, spice

Increasing order 
of accuracy of 
perf. prediction



Successful Benchmarks: SPEC

° 1987 RISC industry mired in “bench marketing”:
(“That is 8 MIPS machine, but they claim 10 MIPS!”)

° 5 companies band together to perform Systems Performance 
Evaluation Committee (SPEC) in 1988: ( )

Sun, MIPS, HP, Apollo, DEC

° SPEC was created to improve the measurement and reporting of CPU 
performance, through a better controlled measurement process and 
the use of more realistic benchmarks.

° SPEC created standard list of programs, inputs, reporting: some real 
programs, includes OS calls, some I/O-intensive activities.

° CPU i t i b h k d hi i t i b h k

CS420/520 Lec2.29 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° CPU-intensive benchmarks and graphics-intensive benchmarks 

• SPEC CPU2000 and SPECapcSM

° More details: http://www.spec.org

Other Benchmarks: TPC and EEMBC

° TPC: Transaction Processing Council (www.tpc.org)

• Transaction-processing (TP) benchmarks measure the ability of a 
system to handle transactions, i.e., DB accesses and updates

- airline reservation systems or banking ATM systems

• TPC-A (1985): the first benchmark

• TPC-C (1992): a complex query environment

• TPC-H: ad hoc decision systems – queries are unrelated

• TPC-R: a business decision support system, standard queries

• TPC-W: a Web-based transaction benchmark

° EEMBC: the EDN Embedded Microprocessor Benchmark Consortium

CS420/520 Lec2.30 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

EEMBC: the EDN Embedded Microprocessor Benchmark Consortium

• Embedded benchmarks for embedded computing systems

• “embassy”



SPEC First Round

° First round 1989; 10 programs, single number to summarize 
performance (inverse to execution time)

° One program: 99% of time in single line of code

° New front-end compiler could improve dramatically

100

200

300

400

500

600

700

800

CS420/520 Lec2.31 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Benchmark

0

gc
c

ep
re

ss
o

sp
ic

e

do
du

c

na
sa

7 li

eq
nt

ot
t

m
at

rix
30

0

fp
pp

p

to
m

ca
tv

Fallacy: Benchmarks remain valid indefinitely

SPEC Evolution

° Second round; SpecInt92 (6 integer programs) and SpecFP92 (14 
floating point programs)

• Matrix300 was dropped

° Third round; 1995; new set of programs: 8 integer programs and 10 
fl ti i tfloating point programs

• “Benchmarks useful for 3 years”

° Fourth round; SPEC CPU2000: CINT2000 (11 integer programs) and 
CFP2000 (14 floating-point benchmarks)

• SPECweb99 for Web servers

• Two graphics-intensive benchmarks:

- SPECviewperf

CS420/520 Lec2.32 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

p

- SPECapc

° Fifth round; SPEC CPU2004 (http://www.specbench.org/cpu2004/)



How to Summarize Results?

Computer  A         Computer B
Program P1 (sec): 1   10 
Program P2 (sec):      1000 100 

What are your conclusions?

" X is n times faster than Y"  means

ExTime(Y) Performance(X)  

-------------- = ---------------------- =  n

ExTime(X) Performance(Y)

CS420/520 Lec2.33 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

ExTime(X) Performance(Y)

° Machine A is 10 times faster than B for program P1

° Machine B is 10 times faster than A for program P2

Total Execution Time: A Consistent Summary

Computer  A         Computer B
Program P1 (sec): 1   10 
Program P2 (sec):       1000 100 

Total time (sec): 1001 110Total time (sec): 1001 110

Arithmetic mean:          500.5                       55

° Total execution time

• B is 1001/110=9.1 times faster than A

° Arithmetic mean: an average of the total execution time

CS420/520 Lec2.34 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

g




n

i
iTime

n 1

1



Weighted Execution Time

Computer  A         Computer B
Program P1 (sec): 1   10 
Program P2 (sec):       1000 100 

Arithmetic mean: 500 5 55Arithmetic mean:          500.5                       55

Q: Are P1 and P2 run equally in the workload?


n

iTimeiWeight
n

 *
1

° Weighted Arithmetic Mean

CS420/520 Lec2.35 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

in
1

SPECRatio and Geometric Mean

Computer  A         Computer B
Program P1 (sec): 1   10 
Program P2 (sec):       1000 100 
Program P3 (sec): 100 25Program P3 (sec):       100 25

° SPECRatio: normalize execution time to the reference computer, but 
does not predict execution time

• A ratio rather than an absolute execution time

° Geometric Mean

CS420/520 Lec2.36 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

)...(         2

n

1i
1

1
ni

n

n

i
iratiotimeExecution  





Performance and Price-Performance

Vendor / model                            Processor           Clock rate     Price
(GHz) 

Dell Precision Workstation 420 Intel P4 Xeon 3.8             $3,346

HP ProLiant BL25p                     AMD Opteron 252    2.6 $ 3,099    

HP ProLiant ML350 G4               Intel P4 Xeon            3.4 $ 2,907

HP Integrity rx2620-2                  Itanium 2 1.6             $5,201

Sun Java WS W1100z                 AMD Opteron 150    2.4             $2,145

CS420/520 Lec2.37 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Prices (as of Aug 2005): many factors are responsible to prices, 
including expandability, disk, memory, CPU, etc.

Performance and Performance/Cost (Cont.)

CS420/520 Lec2.38 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• Performance (as of Jan 2006): SPEC CINT2000 summarizes CPU performance; larger 
number indicating higher performance

• Does clock rate reflect the performance ? 



Amdahl's Law -- Example:

Suppose a person wants to travel from city A to city B 
by city C. The routes from A to C are in mountains and 
the routes from C to B are in a desert. The distances 
from A to C, and from C to B are 80 miles and 200from A to C, and from C to B are 80 miles and 200 
miles, respectively.

From A to C, walk at speed of 4 mph
From C to B, walk or drive (at speed of 100 mph)

Question:  How long will it take for the entire trip?
How much faster from A to B by a car as opposed to walk?

CS420/520 Lec2.39 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

How much faster from A to B by a car as opposed to walk?

Quantitative Principles: Amdahl's Law

ExTime after improvement = ExTime unaffected + 

Extime affected / amount of improvement

Speedup due to enhancement E:

ExTime w/o E            Performance w/  E

Speedup(E) =   -------------------- =    ---------------------------

ExTime w/  E              Performance w/o E

CS420/520 Lec2.40 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03



Amdahl's Law (Cont.)

Two key factors:

1) The fraction of the original execution time can be improved
e.g., if 20s of the execution time of a program that takes 60s in 
total can use an enhancement, the fraction (F) = 20/60

2) The improvement gained by the enhanced execution mode    
e.g., if the enhancement mode takes 2s for some portion of the 
program that can completely use the mode, while the original 
mode takes 5s for the same portion, the improvement is 5/2.

Suppose that enhancement E accelerates a fraction F of the task

by a factor S, and the remainder of the task is unaffected then,

CS420/520 Lec2.41 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

ExTime(with E)  = ((1-F) + F/S) X ExTime(without E) 

Speedup(with E) = ExTime(without E)            1 =  1         v

((1-F) + F/S) X ExTime(without E)    (1-F) + F/S

Example: One Enhancement Factor 

Suppose an enhancement make a processor runs 5 times faster 
than the original one, but is only usable 60% of the time

Question 1: what is the overall speedup?

Answer:   

ExTime(with E)  = ((1-F) + F/S) X ExTime(without E) 

Speedup(with E) = ExTime(without E) ÷
((1-F) + F/S) X ExTime(without E)

Fraction_enhance = 0.6

CS420/520 Lec2.42 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Speedup_enhanced = 5
Speedup_overall = 1/(0.4+0.6/5) ≈ 1.92

Q2: to have a speedup 2, how much faster the enhancement must run?
Q3: what is the maximum possible speedup?



Example: Multiple Enhancement Factors

You have a program that takes 100 seconds to execute. Of this time, 
20 seconds for addition, 40 seconds for multiplication, 40 seconds 
For memory access instructions. 

Enhancement A: make multiplication 4 times faster.
Enhancement B: make addition 2 times faster .

Question 1: what is the speedup if only A is used?
2: what is the speedup if both A and B are used?

CS420/520 Lec2.43 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Example: Comparing the speedups

A common transformation required in graphics processors is square root.

FPSQR is responsible for 20% of the execution time
FP operations (including FPSQR) is responsible for 50%

Alternative 1: speed up FPSQR by a factor of 10Alternative 1: speed up FPSQR by a factor of 10
Alternative 2: speed up all FP by a factor of 1.6

Q: which alternative is more effective for performance improvement?

Answer:   

Speedup(with E) = ExTime(without E) ÷

CS420/520 Lec2.44 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Speedup(with E)  ExTime(without E) ÷
((1-F) + F/S) X ExTime(without E)



Example: CPI measurements

Suppose we have made the following measurements:

Frequency of FP operations: 25%
Average CPI of FP operations: 4.0
Average CPI of the other instructions: 1.33

1) What is the CPI of the machine?

2) If we have also made the following measurements:

Frequency of FPSQR operations: 2%
Average CPI of FPSQR operations: 20

N d th CPI f FPSQR t 2 b d i

CS420/520 Lec2.45 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Now, we can decrease the CPI of FPSQR to 2 by a new design. 
What is the new CPI? And what is the speedup of the design?

Answer:   
CPI = CPI_ori – 2% x (CPI _old FPSQR – CPI_new FPSQR)

= 2.0 – 2% x (20 – 2) = 1.64

Example: Compiling

Assume we build an optimizing compiler for the load/store
machine. 

load/store machine After optimizationload/store machine           After optimization

Op Freq CPI Percentage of Instr. executed

ALU 40% 1 50%     (50% discarded)
Load 30% 2 80%     (20%       "         )
Store 20% 2 90%     (10%       "         )

Branch 10% 2 100%   (0%         "           )

CS420/520 Lec2.46 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

1) What is the new CPI?
2) What is the speedup by the use of the new compiler?



Fallacies

° The cost of the processor dominates the cost of the system

Vendor / model                            Processor        Memory    Storage   Software
+ cabinetry

IBM eServer p5 595/64                       28%                16%        51% 6%

IBM eServer p5 595/32                       13%                31%        52% 4%

HP Integrity rx5670 cluster                11%                22%       35%  33%

HP Integrity Superdome                    33%                32%       15%  20%

IBM eServer pSeries 690                   21%                24%        48% 7%

Median of HPC 21%                24%       48%             7% 

Dell PowerEdge 2800                          6%                  3% 80% 11%

D ll P Ed 2850 7% 3% 76% 14%

CS420/520 Lec2.47 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Dell PowerEdge 2850                          7%                  3%         76% 14%

HP ProLiang ML350/1                         5%                  4% 70%            21%

HP ProLiang ML350/2                         9%                  8% 65%            19%

HP ProLiang ML350/3                         8%                  6% 65%            21%

Median of desktops                             7%                  4% 70%            19%

Fallacies

° Peak performance tracks observed performance (car mileage)

CS420/520 Lec2.48 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03



Performance Evaluation Summary

° Integrated circuits driving computer industry

CPU time =  Seconds = Instructions  x  Cycles       x   Seconds

Program Program          Instruction       Cycle

° Die costs goes up with the cube/quad of die area

° Time is the only valid measure of computer performance!

° Good products created when have:

• Good benchmarks

• Good ways to summarize performance

CS420/520 Lec2.49 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Remember Amdahl’s Law

• Speedup is limited by unimproved part of program

° More reading

• CA4: Chapter 1 (reference CO3’s Chapter)

Reading and Homework

• Reading: 

CA 5: Chapter 1  (or CA 4 - Chapter 1)

CO 4: Chapter 1p

• Homework, due 1 week later from the release date, 
see course Web site

•Preview: 

CO 4 Ch 2 (MIPS)

CS420/520 Lec2.50 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

CO 4: Chapter 2 (MIPS)

CA 5: Appendix A (ISA)


