
CS420/520
Computer Architecture I

Memory Hierarchy – Cache Systems

Dr. Xiaobo Zhou

Department of Computer Science

CS420/520 memory.1 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Review: A Pipelined Datapath

Clk

Ifetch Reg/Dec Exec Mem Wr

IF
/ID

ID
/E

x

E
x/M

e

M
em

/W

P
C

Data
MemI

A Ra

RegWr ExtOp

E

busA

busB

Imm16

ALUOp

Imm16

PC+4
PC+4

Rs

P
C

+
4

Zero

Branch

1
0

CS420/520 memory.2 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

D
 R

egister

x R
egister

em
 R

egister

W
r R

egister

WA
Di

RA Do

IU
n

it

I

RFile

Di

Rb

Rw

MemWr

Exec
Unit

ALUSrc

M
u

x

1

0

MemtoReg

1

0

RegDst

Rt

Rd

Rt

The Big Picture: Where are We Now?

° The Five Classic Components of a Computer

Processor

Control

Datapath

Memory

Input

Output

CS420/520 memory.3 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Today’s Topic: Memory System

Who Cares About the Memory Hierarchy?

µProc
55%/yr.
(2X/1 5yr)1000

Processor-DRAM Memory Gap (latency)

10000

(2X/1.5yr)

DRAM 7-9%/yr.
10

100

1000
CPU

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

“Moore’s Law”

CS420/520 memory.4 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

(2X/10 yrs)

1
DRAM

P

Year

19
95

20
01

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
96

19
97

19
98

19
99

20
00

19
82

20
02

20
04

20

03

20
05

What is a Cache?

° Small, fast storage used to improve average access time to slow memory.

° Exploits spatial and temporal locality

° In computer architecture, almost everything is a cache!

• Registers a cache on variablesRegisters a cache on variables

• First-level cache a cache on second-level cache

• Second-level cache a cache on memory

• Memory a cache on disk (virtual memory)

Proc/Regs

L1-Cache
Bigger Faster

CS420/520 memory.5 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

L2-Cache

Memory

Disk, Tape, etc.

Bigger Faster

The Motivation for Caches

Memory System

Processor Cache
Main
M

° Motivation:

• Large main memories (DRAM) are slow

• Small cache memories (SRAM) are fast

Cache Memory

CS420/520 memory.6 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Make the average access time small by:

• Servicing most accesses from a small, fast memory

• An Example

° Reduce the bandwidth required of the large main memory

Memory Hierarchy: Principles of Operation

° At any given time, data is copied between only 2 adjacent levels:

• Upper Level: the one closer to the processor

- Smaller, faster, and uses more expensive technology

• Lower Level: the one further away from the processorLower Level: the one further away from the processor

- Bigger, slower, and uses less expensive technology

° Block:

• The minimum unit of information that can either be present or not
present in the two level hierarchy

Lower Level
MemoryUpper LevelTo Processor

CS420/520 memory.7 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

MemoryUpper Level
Memory

To Processor

From Processor
Blk X

Blk Y

CPU

Memory Hierarchy: Terminology

° Hit: data appears in some block in the upper level (example: Block X)

• Hit Rate: the fraction of memory access found in the upper level

• Hit Time: Time to access the upper level which consists of

Time to determine hit/miss + SRAM access time

° Miss: data needs to be retrieve from a block in the lower level (Block Y)

• Miss Rate = 1 - (Hit Rate)

• Miss Penalty: Time to replace a block in the upper level from lower
level + Time to deliver the block to the processor

° Hit Time << Miss Penalty

Lower Level

CS420/520 memory.8 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

CPU

Memory Hierarchy: How Can it Work?

° Principle of Locality states the programs access a small portion of
address space at any instant of time

• Example: 90% of time in 10% of the code

° Temporal Locality (Locality in Time): If an item is referenced, it will tend
to be referenced again soon (loops).to be referenced again soon (loops).

• Keep more recently accessed data items closer to the processor

° Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon (arrays).

• Move blocks consists of contiguous words to the upper levels

Lower Level
MemoryUpper Level

M
To Processor

CS420/520 memory.9 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Memory

From Processor
Blk X

Blk Y

Address Space0 2

Probability
of reference

CPU

Memory Hierarchy of a Modern Computer System

° By taking advantage of the principle of locality:

• Present the user with as much memory as is available in the
cheapest technology.

• Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egist

Main
Memory
(DRAM)

Second
Level
Cache

O
n

-C
h

C
ach

CS420/520 memory.10 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

ters (SRAM)

h
ip

h
e

0.25ns 10,000,000 ns (5-10s ms)Speed (ns): 0.5ns – 25ns 50-250 ns

100s GsSize (bytes): Ks Ms

Memory Hierarchy Technology

° Random Access:

• “Random” is good: access time is the same for all locations

• DRAM: Dynamic Random Access Memory

- High density, low power, cheap, slow

- Dynamic: need to be “refreshed” regularly

• SRAM: Static Random Access Memory

- Low density, high power, expensive, fast

- Static: content will last “forever”

° “Non-so-random” Access Technology:

• Access time varies from location to location and from time to time

CS420/520 memory.11 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• Examples: Disk, tape drive, CDROM

° The next two lectures will concentrate on random access technology

• The Main Memory: DRAMs

• Caches: SRAMs

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Capacity
Access Time
Cost

Registers

Instr. Operands

Unit size

prog./compiler
1-8 bytes

Upper Level

faster

Cache
K-M Bytes
10-100 ns
$.01-.001/bit

Main Memory
M Bytes
100ns-1us
$.01-.001

Disk

Cache

Memory

Blocks

Pages

1 8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

CS420/520 memory.12 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Disk
G Bytes
ms
10 - 10 cents-3 -4

Tape
infinite
sec-min
10-6

Disk

Tape

Files
user/operator
Mbytes

Lower Level

Larger

A Brief Summary

° Two Different Types of Locality:

• Temporal Locality (Locality in Time): If an item is referenced, it will
tend to be referenced again soon.

• Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soonwhose addresses are close by tend to be referenced soon.

° By taking advantage of the principle of locality:

• Present the user with as much memory as is available in the
cheapest technology.

• Provide access at the speed offered by the fastest technology

• Metric: average access time

° DRAM is slow but cheap and dense:

CS420/520 memory.13 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

DRAM is slow but cheap and dense:

• Good choice for presenting the user with a BIG memory system

° SRAM is fast but expensive and not very dense:

• Good choice for providing the user FAST access time.

How Does Cache Work?

° Temporal Locality (Locality in Time): If an item is referenced, it will tend
to be referenced again soon.

• Keep more recently accessed data items closer to the processor

° Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon.y

• Move blocks consists of contiguous data items to the cache

° What are issues/problems?

• Where can a block be placed in the upper level (block placement)

• How is a block found if it is in the upper level (block identification)

• Which block should be replaced on a miss? (block replacement)

• What happens on a write? (write strategy)

CS420/520 memory.14 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Lower Level
MemoryUpper Level

Cache
To Processor

From Processor
Blk X

Blk Y

CPU

The Simplest Cache: Direct Mapped Cache

Memory

4 One-byte Direct Mapped Cache

Memory Address

0

1

2
Cache Index/address

0
3

4

5

6

7

8

9

A

0

1

2

3

° Location 0 can be occupied by data from:

• Memory location 0, 4, 8, ... etc.

• In general: any memory location
whose 2 LSBs of the address are 0s

CS420/520 memory.15 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

A

B

C

D

E

F

whose 2 LSBs of the address are 0s

• Address<1:0> => cache index
• (Mem. Block Addr) module (#Cache blocks)

° Which one should we place in the cache?

° How can we tell which one is in the cache?

Example:

Consider an eight-word (block size is one word) direct
mapped cache. Show the contents of the cache as it
responds to a series of requests (decimal word addresses):

22, 26, 22, 26, 16, 3, 16, 1822, 26, 22, 26, 16, 3, 16, 18

22 26 22 26 16 3 16 18

10110 11010 10110 11010 10000 00011 10000 10010

miss miss hit hit miss miss hit miss
110 010 110 010 000 011 000 010

CS420/520 memory.16 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

110 010 110 010 000 011 000 010

Cache Organization: Cache Tag and Cache Index

° Assume a 32-bit memory (byte) address:

• A 2^N bytes direct mapped cache:

- Cache Index: The lower N bits of the memory address

- Cache Tag: The upper (32 - N) bits of the memory address

0N31

Cache Index

0

1

2

2 N Bytes
Direct Mapped Cache

Byte 0

Byte 1

Byte 2

0N31

Cache Tag Example: 0x50 Ex: 0x03

Stored as part
of the cache “state”Valid Bit

CS420/520 memory.17 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

3

2 - 1N

:

Byte 3

Byte 2^N -1

:

0x50

:

datahit

Cache Access Example

Access 000 01

Start Up

(miss)

Tag DataV

000 M [00001]

010 M [01010]

Miss Handling:

Access 000 01
(HIT)

000 M [00001]

Access 010 10
(miss)

Miss Handling:
Load DataWrite Tag & Set V

Load Data

000 M [00001]

010 M [01010]Access 010 10
(HIT)

CS420/520 memory.18 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

000 M [00001]

010 M [01010]

Load Data

Write Tag & Set V ° Sad Fact of Life:

• A lot of misses at start up:

Compulsory Misses

- (Cold start misses)

Definition of a Cache Block

° Cache Block: the cache data that has in its own cache tag

° Our previous “extreme” example:

• 4-byte Direct Mapped cache: Block Size = 1 Byte

T k d t f T l L lit If b t i f d• Take advantage of Temporal Locality: If a byte is referenced,
it will tend to be referenced soon.

• Did not take advantage of Spatial Locality: If a byte is referenced,
its adjacent bytes will be referenced soon.

° In order to take advantage of Spatial Locality: increase the block size

Direct Mapped Cache DataCache TagValid

CS420/520 memory.19 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Direct Mapped Cache Data

Byte 0

Byte 1

Byte 2

Byte 3

Cache TagValid

Example:

Consider a cache with 4 Bytes. Show the contents and
the number of hits of the cache as it responds to a
series of requests (decimal byte addresses): 0, 1, 4, 5…
when block size is 1 byte and 2 bytes, respectively.

CS420/520 memory.20 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Mapping an Address to a Multiword Cache Block

Consider a cache with 64 Blocks and a block size of 16 bytes.
What cache block address does memory byte address 1200 map to?

Step 1: memory (byte) address memory block addressp y (y) y

How? memory (unit) address / # of units in a block (block size)

Step 2: memory block address  cache block address

How? DMC mapping scheme

CS420/520 memory.21 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Answer: (1200/16) module 64 = 11

Example: 1 KB Direct Mapped Cache with 32 B Blocks

° For a 2 ^ N byte cache:

• The uppermost (32 - N) bits are always the Cache Tag

• The lowest M bits are the Byte Select (Block Size = 2 ^ M)

0431 9

Cache Index

0

1

2

Cache Data

Byte 0

Cache Tag Example: 0x50

Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Cache Tag

Byte Select

Ex: 0x00

CS420/520 memory.22 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

2

3

:::

31Byte 992Byte 1023 :

Total Bits in a Direct Mapped Cache

How many total bits are required for a directed
mapped cache with 64 KB of data and one-word blocks,
assuming a 32-bit address?

2^14 (32 + (32-14-2)+1) = 2^14*49 = 784 Kbits

2) How about 4-word blocks?

CS420/520 memory.23 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Miss Rate Reduction Technique I: Larger Block Size

CS420/520 memory.24 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Miss rate versus block size for four different-sized cache

° Why the miss rate actually goes up if the block size is too large relative to
the cache size?

Miss Rate Reduction Technique II: Larger Caches

CS420/520 memory.25 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Miss rate versus block size for four different-sized cache

What is the price if the cache size goes up?

Average Memory Access Time

CS420/520 memory.26 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Assume the main memory system takes 80 clock cycles of
overhead per each access and then delivers 16 bytes every 2 clock
cycles. Thus, it can supply 16 bytes in 82 cycles, 32 bytes in 84
cycles. Which block size has the smallest average memory access
time for each cache size in the figure above? Assuming hit time 1
clock cycle, independent of block size.

Average Memory Access Time (II)

CS420/520 memory.27 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

average memory access time = hit time + miss rate x miss penalty_@mem *

4K cache, block size 16 bytes: 1 + 8.57% x 82 = 8.027

4K cache, block size 32 bytes: 1 + 7.24% x 84 = 7.082

Block Size Tradeoff

° In general, larger block size take advantage of spatial locality BUT:

• Larger block size means larger miss penalty:

- Takes longer time to fill up the block

• If block size is too big relative to cache size, miss rate will go up (asIf block size is too big relative to cache size, miss rate will go up (as
the room of taking temporal locality is reduced)

° Average Access Time:

• = Hit Time x (1 - Miss Rate) + Miss Penalty x Miss Rate

Miss
Penalty

Miss
Rate Exploits Spatial Locality

Average
Access

Time

Increased Miss Penalty

CS420/520 memory.28 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Block Size

Fewer blocks:
compromises
temporal locality

Increased Miss Penalty
& Miss Rate

Block Size Block Size

An Extreme Example

° Cache Size = 4 bytes Block Size = 4 bytes

0

Cache DataValid Bit

Byte 0Byte 1Byte 3

Cache Tag

Byte 2

y y

• Only ONE entry in the cache

° True: If an item is accessed, likely that it will be accessed again soon

• But it is unlikely that it will be accessed again immediately!!!

• The next access will likely to be a miss again

- Continually loading data into the cache but
discard (force out) them before they are used again

W t i ht f h d i Pi P Eff t

CS420/520 memory.29 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

- Worst nightmare of a cache designer: Ping Pong Effect

° Conflict Misses are misses caused by:

• Different memory locations mapped to the same cache index

- Solution 1: make the cache size bigger

- Solution 2: Multiple entries for the same Cache Index

And yet Another Extreme Example: Fully Associative

° Fully Associative Cache

• Forget about the Cache Index

• Compare the Cache Tags of all cache entries in parallel

• Example: Block Size = 32 bytes, we need N 27-bit comparators

° By definition: Conflict Miss = 0 for a fully associative cache

Cache Data

0431

Cache Tag (27 bits long)

Valid BitCache Tag

Byte Select

Ex: 0x01

CS420/520 memory.30 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

:

Byte 0

: :

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

X

X

X

X

X

N-way Set Associative Cache

° N-way set associative: N entries for each Cache Index

• N direct mapped caches operates in parallel

° Example: Two-way set associative cache

• Cache Index selects a “set” from the cache

• The two tags in the set are compared in parallel

• Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

CS420/520 memory.31 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Mux

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Disadvantage of Set Associative Cache

° N-way Set Associative Cache versus Direct Mapped Cache:

• N comparators vs. 1

• Extra MUX delay for the data

• Data comes AFTER Hit/Miss

° In a direct mapped cache, Cache Block is available BEFORE Hit/Miss:

• Possible to assume a hit and continue. Recover later if miss.

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

CS420/520 memory.32 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Mux

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Example:

There are three small caches, each consisting of four one-word
blocks. One cache is fully associative, a second is two-way

Miss Rate Reduction Technique III: Higher Associativity

y , y
set associative, and the third is direct mapped. Find the number
of misses for each cache organization given the following
sequence of word addresses: 0, 8, 0, 6, 8

* Unified mapping schemes:
(Memory block address) module (# cache sets)

CS420/520 memory.33 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

What if change the block size to 2-words?

A Common Framework for Memory Hierarchies

° Question 1: Where can a block be placed?

Scheme name Number of Sets Block per set

Directed mapped cache Number of blocks in cache 1

Set Associative Number of blocks in cache Associativity
Associativity

Fully associative 1 # of blocks in cache

° Question 2: How is a block Found?

Associativity Location method Comparisons required

CS420/520 memory.34 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Associativity Location method Comparisons required

Directed mapped index 1

Set associative index the set degree of associativity

Full search all cache entries size of the cache

A Summary on Sources of Cache Misses

° Compulsory (cold start, first reference):

• first access to a memory block
- Compulsory miss rate fixed once the block size fixed

• “Cold” fact of life: not a whole lot you can do about it

° Conflict (collision):

• Multiple memory locations mapped
to the same cache location

• Solution 1: increase cache size

• Solution 2: increase associativity

° Capacity:

• Cache cannot contain all blocks access by the program

CS420/520 memory.35 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• Cache cannot contain all blocks access by the program

- More than N distinct blocks used from last access ->
capacity

• Solution: increase cache size

° Invalidation: other process (e.g., I/O) updates memory

Miss Classification Example

° 4B cache, 1B blocks, directed mapped cache
• 4 blocks, 4 sets

Current contents Access address Hit/Miss (which)

4, 1, 2, 7 4 hit

4, 1, 2, 7 8 Compulsory miss

8, 1, 2, 7 5 Compulsory miss

8, 5, 2, 7 1 Conflict miss

8, 1, 2, 7 6 Compulsory miss

8, 1, 6, 7 4 Capacity miss

CS420/520 memory.36 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

First time -> Compulsory miss

N=4 distinct blocks used from the last access -> Capacity miss

Everything else -> Conflict miss

3Cs Absolute Miss Rate

p
er

 T
yp

e

0.08

0.1

0.12

0.14
1-way

2-way

4-way

Conflict
M

is
s

R
at

e
p

0

0.02

0.04

0.06
1 2 4 8

16 32 64

12
8

8-way

Capacity

Compulsory

CS420/520 memory.37 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Cache Size (KB) Compulsory

• Compulsory misses (and rate) are independent of cache size (w/
fixed block size)

• Compulsory miss rate is very small
• Capacity misses decrease as capacity increase
• Conflict misses decreases as associativity increase

Q3: The Need to Make a Decision!

° Direct Mapped Cache:

• Each memory location can only mapped to 1 cache location

• No need to make any decision :-)

- Current item replaced the previous item in that cache location

° N-way Set Associative Cache:

• Each memory location have a choice of N cache locations

° Fully Associative Cache:

• Each memory location can be placed in ANY cache location

° Cache miss in a N-way Set Associative or Fully Associative Cache:

B i i bl k f

CS420/520 memory.38 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• Bring in new block from memory

• Throw out a cache block to make room for the new block

• ==> We need to make a decision on which block to throw out!

Cache Block Replacement Policy

° Random Replacement:

• Hardware randomly selects a cache item and throw it out

° Least Recently Used (LRU):

• Special hardware keeps track of the access history

• Replace the entry that has not been used for the longest time

° Example of a Simple “Pseudo”-LRU Implementation:

• Assume 64 Fully Associative Entries

• A replacement pointer points to one cache entry

• Whenever an access is made to the entry the pointer points to:

- Move the pointer to the next entry

Oth i d t th i t

CS420/520 memory.39 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• Otherwise: do not move the pointer

• Example: 0, 5, 2, 0, 1, 5…

° FIFO Replacement

° NRU (Not Recently Used) Replacement or LFU or NFU

:

Entry 0

Entry 1

Entry 63

Replacement

Pointer

Least Recently Used (LRU)

° Must keep a linked list of blocks(pages)

• most recently used at front, least at rear

• update this list every memory reference !!

• There are other simulation alternatives, but all costly

° Alternatively keep a counter in each block entry (in VM, in
each page entry)

• choose block(page) with lowest value counter

• periodically zero the counter (NRU)

• And more simulation alternatives

CS420/520 memory.40 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Re: Page Replacement Algorithms (Continued)

Not Recently Used (NRU):

Associated with each page is a reference flag (use/reference bit) such
that reference flag = 1 if the block (in VM, page) has been referenced

in recent past (read or write)
= 0 otherwise

-- if replacement is necessary, choose any block such that its
reference bit is 0. This is a block that has not been referenced in the
recent past period

In practice, a multi-class NRU considerers both r bit and m bit; see OS!

CS420/520 memory.41 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Data Cache Misses of LRU, Random, FIFO (Alpha)

Associativity

Two-way Four-way

P 1000 i t ti bl k i 64B 10 SPEC2000

Size LRU Random FIFO LRU Random FIFO

16KB 114.1 117.3 115.5 111.7 115.1 113.3

64KB 103.4 104.3 103.9 102.4 102.3 103.1

256KB 92.2 92.1 92.5 92.1 92.1 92.5

CS420/520 memory.42 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Per 1000 instructions; block size 64B; 10 SPEC2000

For the largest cache, little difference between different schemes.

For smaller caches, LRU outperforms the others.

FIFO in general outperforms the random in the smaller caches.

What it tells?

Q4: Cache Write Policy:
Write Through versus Write Back

° Cache read is much easier to handle than cache write:

• Instruction cache is much easier to design than data cache

° Cache write:Cac e te

• How do we keep data in the cache and memory consistent?

° Two options (decision time again :-)

• Write Through: write to cache and memory at the same time.

- Simplifies data coherency

- What!!! How can this be? Isn’t memory too slow for this?

• Write Back: write to cache only. Write the cache block to memory
when that cache block is being replaced on a cache miss

CS420/520 memory.43 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

when that cache block is being replaced on a cache miss.

- Need a “dirty” bit for each cache block

- Multiple writes within a block require one write to memory

- Greatly reduce the memory bandwidth requirement

- Control can be complex

Write Buffer for Write Through

Processor
Cache

Write Buffer

DRAM

 µ

° A Write Buffer is needed between the Cache and Memory

• It is for write through, not write back!

• Processor: writes data into the cache and the write buffer (quick)

• Memory controller: write contents of the buffer to memory (slow)

• Purpose: overlap processor execution with memory updating

° Write buffer is just a FIFO:

CS420/520 memory.44 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Write buffer is just a FIFO:

• Typical number of entries: 4

• Works fine if: Store frequency (rate) << 1 / DRAM write cycle

(DRAM write rate)

Write Buffer Saturation

° St f (t)  1 / DRAM it l (DRAM it t)

Processor
Cache

Write Buffer

DRAM

 µ

° Store frequency (rate)  1 / DRAM write cycle (DRAM write rate) µ

• If this condition exist for a long period of time (CPU cycle time too
quick and/or too many store instructions in a row):

- Store buffer will overflow no matter how big you make it;
(limited-buffer queueing)

- The CPU Cycle Time <= DRAM Write Cycle Time

° Solution for write buffer saturation:

CS420/520 memory.45 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• Use a write back cache

• Install a second level (L2) cache:

Processor
Cache

Write Buffer

DRAML2
Cache

Write Buffer Consistency Issue

Processor
Cache

Write Buffer

DRAM

° Assume a direct-mapped, write-through cache that maps memory word
address 512 and 1024 to the same cache block (index 0), and a four-
word write buffer. Will the value in R2 always be equal to the value in
R3?

SW R3, 512(R0) ; M[512] R3 (cache index 0)
LW R1, 1024 (R0) ; R1  M[1024] (cache index 0)
LW R2, 512(R0) ; R2  M[512] (cache index 0)

CS420/520 memory.46 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Write buffer complicates memory accesses because they might hold the
updated value of a location needed on a read miss (RAW hazard)

• Option1: Read miss to wait until the write buffer is empty

• Option 2: check the contents of the write buffer on a read miss first!

(Giving priority to Read Misses over Writes to reduce Miss Penalty)

Write Allocate versus Not Allocate

° Assume: a 16-bit write to memory location 0x0 and causes a write miss

• Do we read in the rest of the block (Byte 2, 3, ... 31)?
Yes: Write Allocate (act like read misses)
No: Write Not Allocate (the block is modified only in the lower-

level main memory)y)

Cache Index

0

1

Cache Data

Byte 0

0431

Cache Tag Example: 0x00

Ex: 0x00

0x00

Valid Bit

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Cache Tag

Byte Select

Ex: 0x00

9

CS420/520 memory.47 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

1

2

3

:::

31

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Example:

Assuming a fully associative write-back cache with many cache entries
that starts empty. Below is a sequence of five memory operations (the
address is in square brackets).

Write Mem[100];
Write Mem[100];
Read Mem[200];
Write Mem[200];
Write Mem[100];

What are number of hits and misses when using write not allocation and
write allocate, respectively?

Write not allocate: m m m h m (4 misses and 1 hit)

CS420/520 memory.48 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Write not allocate: m, m, m, h, m (4 misses and 1 hit)

Write allocate: m, h, m, h, h (2misses and 3 hits)

Observations: Write through + not allocate

Write back + allocate

Performance: Impact on Cycle Time

IR

PC
I -Cache

miss
Cache Hit Time:

directly tied to clock rate
i ith h i

D Cache

A B

R

T

IRex

IRm

IR b

invalid

increases with cache size
increases with associativity

Average Memory Access time =

CS420/520 memory.49 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

TIRwb

Miss
(Hit Rate) x Hit Time +
Miss Rate x Miss Penalty

Time = IC x CT x (ideal CPI + average memory stalls)

Improving Cache Performance: 3 general options

1. Reduce the miss rate / increase the hit rate,

2. Reduce the miss penalty, or

Time = IC x CT x (ideal CPI + average memory stalls)

3. Reduce the time to hit in the cache.

Memory stall cycles = Read stall cycles + write-stall cycles

Read stall cycles = #reads * read miss rate * read miss penalty
= #i-reads * i-read miss rate * i-read miss penalty +

#d-reads * d-read miss rate * d-read miss penalty

CS420/520 memory.50 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Write stall cycles = #writes * write miss rate * write miss penalty

Memory stall cycles = #memory access * average miss rate * miss penalty

= IC * memory access * average miss rate * miss penalty
Instruction

Memory Performance Example I

Q1: Assume an instruction cache miss rate for gcc of 2% and a data cache
miss rate of 4%. If a machine (M1) has a CPI of 2 if without any memory
stalls and the miss penalty is 40 cycles for all misses, determine how much
faster a machine (M2) would run with a perfect cache that never missed.
It is known that the frequency of all loads and stores in gcc is 36%

Answer:
Instruction miss cycles = I * 2% * 40 = 0.80I
Data miss cycles = I * 36% * 4% * 40 = 0.576I = 0.58 I
M1: The CPI with memory stalls is 2 + 1.38 = 3.38
M2: The CPI with a perfect cache is 2
The performance with the perfect cache is:

Per_M2/Per_M1 = 3.38 / 2 = 1.69

CS420/520 memory.51 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

_ _

Q2: Suppose we speed up the machine by reducing CPI from 2 to 1
without changing the clock rate & memory system, how much faster M2
than M1

Memory Performance Example I (cont.):

Q3: If we double clock rate (M3), assuming the absolute time
(miss penalty) to handle a cache miss does not change, how
much faster M3 than M1 (Q1)

Lower Level
MemoryUpper LevelTo Processor

Answer:

y
Memory

o ocesso

From Processor
Blk X

Blk Y

CPU

Miss penalty in terms of # clock cycles doubles!

CS420/520 memory.52 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Instruction miss cycles = I * 2% * 80 = 1.60I
Data miss cycles = I * 36% * 4% * 80 = 0.576I = 1.16 I
M3: The CPI with memory stalls is 2 + 2.76 = 4.76
M1: The CPI is 3.38
The performance with the fast clock is:

Per_M3/Per_M2 = 3.38 / (4.76 x ½) = 1.42

Multi-level Cache to reduce Miss Penalty

° Should we make the cache faster to keep pace with the speed of CPUs, or
make the cache larger to overcome the widening gap between the CPU
and main memory?

• If both, multi-level caches

• In a two-level modern cache system

th fi t l l ll h t t h th l k l ti f f t- the first-level small enough to match the clock cycle time of fast
CPU

- The second-level cache can be large enough to capture many
access that would go to slow main memory so as to reduce the
effective miss penalty – second level faster than MM

Proc/Regs

CS420/520 memory.53 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

L1-Cache

L2-Cache

Memory

Bigger Faster

Local Miss Rate and Global Miss Rate

° Local miss rate: the number of misses in a cache divided by the total
number of memory accesses to this cache

• Miss rate_L1: the number of misses in a cache divided by the total
number of memory accesses from CPU to L1 cache

• Miss rate_L2: the number of misses in a cache divided by the total
number of memory accesses from L1 cache to L2 cachenumber of memory accesses from L1 cache to L2 cache

° Global miss rate: the number of misses in the cache divided by the total
number of memory access generated by the CPU

• Level one: global miss rate = local miss rate

• Level two: global miss rate = Miss rate_L1 x Miss rate_L2

° Average memory access time = Hit time_L1 + Miss rate x Miss pentaly_L1

Miss pentaly L1 = Hit time L2 + Miss rate L2 x Miss pentaly L2

CS420/520 memory.54 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Miss pentaly_L1 = Hit time_L2 + Miss rate_L2 x Miss pentaly_L2

<< Miss pentaly_L2

CPU
Memory
(main)

L2
Cache

L1
Cache

Performance of A Two-level Cache

° Suppose that in 1000 memory accesses, 40 misses in the first-level cache
and 20 misses in the second-level cache.

Question 1: what are the various miss rates?

Miss rate_L1 = 40/1000 = 4% for both local and global

° Question 2: assume the miss penalty from L2 cache to memory is 100
cycles, hit time of L2 cache is 10 cycles, the hit time of L1 cache is 1 cycle.
What is the average memory access time?

Local Miss rate_L2 = 20/40 = 50%
Global Miss rate_L2 = 20/1000 = 2% (or 4% * 50%)

Average memory access time = Hit time_L1 + Miss rate_L1 * (hit
ti L2 + i t L2 * i lt L2)

CS420/520 memory.55 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

time_L2 + miss rate_L2 * miss penalty_L2)
= 1 + 4% * (10 + 50% * 100) = 1 + 4% * 60 = 3.4 clock cycles

or Average memory access time = (1000 * 1 + 20 * 10 + (40 - 20) *
(100+10)) / 1000 = (1000 + 200 + 2200) / 1000 = 3.4 clock cycles

Main Memory Organizations to reduce Miss Penalty

° First-level caches are often organized with a
physical width of 1 word because most CPU access
are that size.

° Performance factors:CPU Performance factors:

• 4 clock cycles to send a bank (a word) address

• 56 clock cycles for the access time per bank
(word)

• 4 clock cycles to send a bank (word) of data via
bus

° Given a cache block of 4 words, performance/Miss
Penalty of a one-word-wide memory is

CPU

Cache

M

bus

bank

CS420/520 memory.56 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Basic Memory organization (A)
One-word-wide bank & bus

y y

• 4 * 4 + 4 * 56 + 4 * 4 = 256 cycles

Memory Transfer Time =
Memory access time + Bus transfer time
Memory access time >> Bus transfer time

First Technique: Wider Main Memory

CPU

° Performance factors:

• 4 clock cycles to send a memory
bank address

• 56 clock cycles for the access
time per memory bankCPU

CPU

Cache

M

bus

mux

• 4 clock cycles to send a memory
bank of data via bus

° Given a cache block of 4 words,
performance/Miss Penalty of a two-
word-wide memory is

• 2 * 4 + 2 * 56 + 2 * 4 = 128 cycles

° Given a cache block of 4 words,

Cache

M

bus

bank

bank

CS420/520 memory.57 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Wide Memory organization (B)
Wide Path Between Memory & Cache

(Higher cost in Bus & Memory)

Given a cache block of 4 words,
performance/Miss Penalty of a four-
word-wide memory is

• 4 + 56 + 4 = 64 cycles

Some difference between CA and CO in address sending overhead!

Cycle Time versus Access Time

° DRAM (Read/Write) Cycle Time >> DRAM (Read/Write) Access Time

TimeAccess Time

Cycle Time

Send Time

How about to reduce access time by increasing memory bandwidth?

of Memory access = -------------------------------
Cache Block Size

of banks x bank size

CS420/520 memory.58 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Increasing Memory Bandwidth - Interleaving

Access Pattern without Interleaving:
CPU Memory

Start Access for D1 Start Access for D2
D1 available

Access Pattern with 4-way Interleaving:

3

CPU

Memory
Bank 1

Memory
Bank 0

Memory
B k 2

D2 available

CS420/520 memory.59 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

A
cc

es
s

B
an

k
0

1
2

3

Send Bank 1

Memory
Bank 3

Bank 2

Sendr Bank 2
Send Bank 3

Send Bank 4

Second Technique: Interleaved Memory

CPU

Cache

mux

CPU
CPU

Cache Cache

Cache

M

bus

M

bus

M M MM

bus

Memory organization A
One-word-wide bank & bus

Wide Memory organization (B)
Wide Path Between Memory & Cache

Memory organization (C)
Memory Interleaving

bank
bank bank bank bankbank

CS420/520 memory.60 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Given a cache block of 4 words, performance/Miss Penalty of a four-
way interleaving memory (4 one-word banks) is

• 4 + 56 + 4 x 4 = 76 cycles

• Or 4 x 4 + 56 + 4 x 4 = 88 cycles

Main Memory Performance Example

° Timing model
• 1 clock cycle to send bank address,

• 6 access time for one bank, 1 to send one-bank data

• Cache Block is 4 words

° Simple M.P.
• No interleaving, one-word-bank, one-word bus

- = 4 + 4 x 6 + 4 x 1 = 32
° Wide M.P.

• Four-word bank, four-word bus: 1 + 6 + 1 = 8
• Two-word bank, two-word bus: 2 + 2 x 6 + 2 x 1 = 16

CS420/520 memory.61 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Interleaved M.P.
• 4-way interleaving memory, one-word-bank, one-

word bus: 4 + 6 + 4 x 1 = 14
• 2-way interleaving memory, two-word-bank, two-

word bus: 2 + 6 + 2 x 1 = 10

Common Framework for Memory Hierarchy

° Question 1: Where can a Block be Placed

• Cache:

- direct mapped, n-way set associative

• VM:

f ll i ti- fully associative

° Question 2: How is a block found

• index,

• index the set and search among elements

• search all cache entries or separate lookup table

° Question 3: Which block be replaced

CS420/520 memory.62 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• Random, LRU, NRU (not-recently-used), FIFO

° What happens on a write

• write through vs write back

• write allocate vs write no-allocate on a write miss

Summary of Six Basic Cache Optimization

° Larger block size to reduce miss rate

° Bigger cache to reduce miss rate

° Higher associativity to reduce miss rate (conflict miss)

° Multi-level caches to reduce miss penalty

° Giving priority to read misses over writes to reduce miss penalty

° Avoiding address translation during cache indexing to reduce hit
time

CS420/520 memory.63 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Eleven Advanced Cache Optimizations

° Reducing the hit time: small and simple caches, way prediction, and
trace caches

° Increasing cache bandwidth: pipelined caches, multi-banked caches,
and non-blocking caches

° Reducing the miss penalty: critical word first and merging write
buffers

° Reducing the miss rate: compiler optimization

° Reducing the miss penalty or miss rat via parallelism: hardware pre-
fetching and compiler pre-fetching

° Where to read for memory hierarchy?

CS420/520 memory.64 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Where to read for memory hierarchy?

• CO 4: Chapter 5

• CA 5: Appendix B

Summary:

° The Principle of Locality: Temporal Locality vs Spatial Locality

° Four Questions For Any Cache
• Where to place in the cache
• How to locate a block in the cache

R l t R d LRU NRU LFU• Replacement: Random, LRU, NRU, LFU
• Write policy: Write through vs Write back

- Write miss: Write Allocate vs. Write Not Allocate
- Write buffer

° Three Major Categories of Cache Misses:
• Compulsory Misses: sad facts of life. Example: cold start misses.
• Conflict Misses: increase cache size and/or associativity.

Nightmare Scenario: ping pong effect!

CS420/520 memory.65 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Nightmare Scenario: ping pong effect!
• Capacity Misses: increase cache size

° Three general options to improve cache performance
• Reduce the miss rate / increase the hit rate,
• Reduce the miss penalty, or
• Reduce the time to hit in the cache

