
CS420/520
Computer Architecture I

Virtual Memory

Dr. Xiaobo Zhou

Department of Computer Science

CS420/520 virtual memory.1 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Review: The Principle of Locality

Probability
of reference

° The Principle of Locality:

• Program access a relatively small portion of the address space at
any instant of time.

• Example: 90% of time in 10% of the code

Address Space0 2

CS420/520 virtual memory.2 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

p

Re: Summary

° The Principle of Locality: Temporal Locality vs Spatial Locality

° Four Questions For Any Cache
• Where to place in the cache
• How to locate a block in the cache

R l t R d LRU NRU LFU• Replacement: Random, LRU, NRU, LFU
• Write policy: Write through vs Write back

- Write miss: Write Allocate vs. Write Not Allocate
- Write buffer

° Three Major Categories of Cache Misses:
• Compulsory Misses: sad facts of life. Example: cold start misses.
• Conflict Misses: increase cache size and/or associativity.

Nightmare Scenario: ping pong effect!

CS420/520 virtual memory.3 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Nightmare Scenario: ping pong effect!
• Capacity Misses: increase cache size

° Three general options to improve cache performance
• Reduce the miss rate / increase the hit rate,
• Reduce the miss penalty, or
• Reduce the time to hit in the cache

Today’s Topic --- Virtual Memory

Provides illusion of very large memory
– sum of the memory of many jobs greater than physical memory
– address space of each job larger than physical memory

Allows available (fast and expensive) physical memory to be
very well utilized

Simplifies memory management (main reason today) – do we need VM if
the main memory is already as large as the virtual address of a program?

Exploits memory hierarchy to keep average access time low.

Involves at least two storage levels: main and secondary (Disk)

Virtual Address -- address used by the programmer

CS420/520 virtual memory.4 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Virtual Address Space -- collection of all such addresses

Memory Address -- address of word in physical memory
also known as “physical address” or “real address”

Memory Address Space - collection of all such addresses

Basic Issues in VM System Design
What is the size of information blocks that are transferred from

secondary to main storage fixed-size page; segmentation

Which region of M is to hold the new block --> placement policy

How is a block found if it is in main memory -> location policy

If block of information brought into M, and M is full, then some region
of M must be released to make room for the new block -->
replacement policy

Missing item fetched from secondary memory only on the occurrence
of a fault --> fetch/load policy; and what happens on a write?

cache
mem disk

CS420/520 virtual memory.5 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Paging Organization

virtual and physical address space partitioned into blocks of equal size

pages

reg

Mapping of Virtual addresses to Physical addresses

Page fault

Page hit

……

CS420/520 virtual memory.6 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Logical program in its
contiguous address space

Actual locations of the
pages in physical memoryAddress translation

Optimal Page Size

° Most machines at 4K to 16K byte pages today, with page sizes
likely to increase towards 32KB and 64KB

• Size of the page table is inversely proportional to the page size

• Pages should be large enough to amortize the high access time,
transferring larger pages is more efficienttransferring larger pages is more efficient

- Access time vs. transfer time

• But small page size means less waste (internal fragmentation),
more flexibility of dealing with different sizes of code

CS420/520 virtual memory.7 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Typical Ranges of Parameters for Cache and VM

Parameter First-level Cache Virtual Memory

Block (page) size 16-128 Bytes 2^12 – 2^16 bytes

Hit time 1-3 clock cycles 50 – 150 clock cycles

Miss Penalty 8-150 clock cycles 1M-10M clock cycles

(access time) 6-130 clock cycles 0.8M-8M clock cycles

(transfer time) 2-20 clock cycles 0.2M–2M clock cycles

Miss rate 0.1 – 10 % 10^ - 4 – 10^-5%

CS420/520 virtual memory.8 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Address mapping 25-45 bit physical 32-64 bit virtual addr.
addr.
14-20 bit cache addr. 20-45 bit physical addr.

Hit time << miss penalty

More Differences between Cache and VM

° Replacement on misses
• In cache, is primarily controlled by hardware

• In VM, is controlled by operating system (OS)

- Longer miss penalty means the value of good decision

OS ff d t hi ti t d l ith d l- OS can afford to use sophisticated algorithms and complex
data structures

° Size:
• In cache: independent of the processor address size

• In VM: size of the processor address determines VM’ size

° Sharing

CS420/520 virtual memory.9 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• In cache: all space dedicates to caching purpose

• In VM: the secondary storage is also used for file system

Q1: Placing a Page in MM (Fully Associative)

What is page size?

Why no tags?

• indexed with the
virtual page #

CS420/520 virtual memory.10 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

+1 = 19 32

p g

often rounded

Q2: Finding a Page in Memory (or in Disk)

{

CS420/520 virtual memory.11 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Two data structures created by OS on creating a process

• To record where each virtual page is stored on disk (in PT or not)

• To track which virtual address(es) use each physical page (for
replacement)

could be in two tables.

Page Table Size

Given a 32-bit virtual address,
4 KB pages,
4 bytes per page table entry (memory addr. or disk addr.)

What is the size of the page table?

The number of page table entries:

2^32 / 2^12 = 2^20

The total size of page table:

2^20 * 2^2 = 2^22 (4 MB)

Wh l l t P T bl i th i d it lf (i t l

CS420/520 virtual memory.12 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

When we calculate Page Table size, the index itself (virtual page
number) is often NOT included!

What if the virtual memory address is 64-bit?

64-bit Machines: Inverted Page Tables

° Inverted page table: one entry per page frame in physical memory,
instead of one entry per page of virtual address space.

Given a 64-bit virtual address,
4 KB pages,
256 MB physical memory

How many entries in the Page Table?
How large is the Page Table?
Worse: virtual-physical translation slow!

CS420/520 virtual memory.13 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Comparison of a traditional page table with an inverted page table

Q3: Page Replacement Algorithms

° Just like cache block replacement!

° Least Recently Used (LRU)
• Selects the least recently used page for replacement

• Good performance recognizes principle of localityGood performance, recognizes principle of locality

• Expensive to implement

- Requires updating a data structure on every memory
reference

– entries from most recently referenced to least recently
referenced; when a page is referenced it is placed at the head
of the list; the end of the list is the page to replace

• Alternative

CS420/520 virtual memory.14 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

- approximate LRU by keeping track of which pages have and
which pages have not been recently used

– Use/reference bit; periodically cleared by OS’ clock interrupt

– to find a page among the Not Recently Used ones to replace

Example:

Suppose the most recent page references (in order) were
10, 12, 9, 7, 11, 10

When page 8 is referenced, which was not present in memory, and
the memory is full.

Which page should be replace in LRU?

CS420/520 virtual memory.15 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Re: Page Replacement Algorithms (Continued)

Not Recently Used (NRU):

Associated with each page is a reference flag (use/reference bit) such
that reference flag = 1 if the page has been referenced in recent past

= 0 otherwise

-- if replacement is necessary choose any page such that its-- if replacement is necessary, choose any page such that its
reference bit is 0. This is a page that has not been referenced in the
recent past period

In practice, NRU is more complex, depending on both R and W bits; see OS.

CS420/520 virtual memory.16 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Demand Paging and Pre-fetching Pages

Fetch Policy

when is the page brought into memory?
if pages are loaded solely in response to page faults, then the

policy is demand paging

An alternative is pre-fetching (pre-paging):

anticipate future references and load such pages before their
actual use, usually for the working set of specific processes

+ reduces page transfer overhead

- removes pages already in page frames, which could adversely
affect the page fault rate

CS420/520 virtual memory.17 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

- predicting future references usually difficult (but remember what
happened before is not)

Most systems implement demand paging without pre-paging,
but pre-paging is useful in multiprogramming (OS)

Q4: Write Issue

° What happens on a write?

• Great access time in the disk, none has yet built a VM that
write though main memory to disk

- Write strategy is always write back w/ dirty bit

CS420/520 virtual memory.18 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Entry in Page Table

Virtual Address

Virtual page number Page offset

Valid Ref/use Dirty Protection Physical Address
(virtual page #) (physical page #)

CS420/520 virtual memory.19 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Translation Look-Aside Buffers

A way to speed up address translation is to use a special cache of
recently used page table entries -- this has many names, but the most
frequently used is Translation Lookaside Buffer or TLB

Virtual page number Valid Ref/use Dirty Protection Physical Address
(virtual page #) (physical page #)

TLB access time comparable to cache access time;
much less than Page Table (usually in main memory) access time

(virtual page #) (physical page #)

T diti ll TLB t d h dli d b MMU

CS420/520 virtual memory.20 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Traditionally, TLB management and handling were done by MMU
Hardware, today, more in software

Acting of Translation Look-Aside Buffers

A subset of mapping

CS420/520 virtual memory.21 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Real World: Operation of the Opteron data TLB

CS420/520 virtual memory.22 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

The TLB uses fully associative placement.

Integrating TLB, Cache, and VM

Just like any other cache, the TLB can be organized as fully associative,
set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
high end machines. This permits fully associative lookup on these
machines. Most mid-range machines use small n-way set associativemachines. Most mid range machines use small n way set associative
organizations.

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

hit

missTranslation
with a TLB

CS420/520 virtual memory.23 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

data

Trans-
lation

TLB misses go to Page Table translation for memory/disk
page addresses; if in disk, called page fault

Hardware/Software Interface

° Process: state of a program

• Page table + program counter (PC) + the registers

• Active and inactive processes

- Possession of the CPU or not

• To make a process active, OS loads the process’s state, including
PC

- Execution starts at the value of the saved PC

- Process migration

CS420/520 virtual memory.24 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

An Example – DECStation 3100

What is TLB scheme?

What is page/block size?

What is cache scheme?

What if TLB miss?

CS420/520 virtual memory.25 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Read and Write in DECStation 3100

CS420/520 virtual memory.26 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Common Framework for Memory Hierarchy

° Question 1: Where can a Block be Placed

• Cache:

- direct mapped, n-way set associative

• VM:

- fully associative – to reduce page fault rate- fully associative – to reduce page fault rate

° Question 2: How is a block found

• index,

• index the set and search among elements

• search all cache entries or separate lookup table

• VM: a data structure (and TLB)

° Q

CS420/520 virtual memory.27 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Question 3: Which block be replaced

• Random, LRU, NRU, FIFO

° Question 4: What happens on a write

• write through vs write back

• VM: write-back; write-through takes too long!

Summary of Virtual Memory

° Virtual Memory invented as another level of the hierarchy

° Today VM allows many processes to share single memory without
having to swap all processes to disk, protection is more important

° (M lti l l) t bl t i t l dd t h i l dd° (Multi-level) page tables to map virtual address to physical address

° TLBs are important for fast translation

° TLB misses are significant in performance

° More information
CO 4: Chapter 5
CA 5: Appendix B

CS420/520 virtual memory.28 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

CA 5: Appendix B

Homework, due one week later

° See course Web site

CS420/520 virtual memory.29 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

