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Recap: A Single Cycle Processor
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Recap: Drawbacks of this Single Cycle Processor

° Long cycle time:
• Cycle time must be long enough for the load instruction:

- PC’s Clock -to-Q  +
- Instruction Memory Access Time +Instruction Memory Access Time 
- Register File Access Time  +
- ALU Delay (address calculation)  +
- Data Memory Access Time  +
- Register File Setup & Writing Time +
- Clock Skew

° Cycle time is much longer than needed for all other instructions. 
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y g
Examples:

• R-type instructions do not require data memory access
• Jump does not require ALU operation nor data memory access

Recap: Overview of a Multiple Cycle Implementation

° The root of the single cycle processor’s problems:
• The cycle time has to be long enough for the slowest instruction

° Solution:
• Break  the instruction into smaller steps
• Execute each step (instead of the entire instruction) in one cycle

- Cycle time: time it takes to execute the longest step 
- Keep all the steps to have similar length

• This is  the essence of the multiple cycle processor

° The advantages of the multiple cycle processor:
Cycle time is much shorter
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• Cycle time is much shorter
• Different instructions take different number of cycles to complete

- Load takes five cycles
- Jump only takes three cycles

• Allows a functional unit to be used more than once per instruction



Recap: Multiple Cycle Processor

° MCP: A functional unit to be used more than once per instruction
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Outline of Today’s Lecture--- Pipelining 

° Introduction to the Concept of Pipelined Processor 

° Pipelined Datapath  and Pipelined Control

° How to Avoid Race Condition in a Pipeline Design? 

° Pipeline Example: Instructions Interaction
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Preview: The Five Stages of Load
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

° Ifetch: Instruction Fetch
• Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch  and Instruction Decode

° Exec: Calculate the memory address

° Mem: Read the data from the Data Memory
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° Wr: Write the data back to the register file

Pipelining: Its Natural!

° Laundry Example

° Ann, Brian, Cathy, Dave 
each have one load of clothes A B C D
to wash, dry, and fold

° Washer takes 30 minutes

° Dryer takes 40 minutes
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° “Folder” takes 20 minutes



Recap: A Multiple Cycle Datapath (base for pipelining)

Beqz
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• Allows a functional unit to be used more than once per instruction 
is NOT good for pipelining

- Adder +  ALU; Instruction mem + Data mem

Sequential Laundry

6 PM 7 8 9 10 11 Midnight
Time

A

B

C

30 40 20 30 40 20 30 40 20 30 40 20
T
a
s
k

O
r
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° Sequential laundry takes 6 hours for 4 loads

° If they learned pipelining, how long would  laundry take?
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D
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r



Pipelined Laundry: Start work ASAP

6 PM 7 8 9 10 11 Midnight
Time
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° Pipelined laundry takes 3.5 hours for 4 loads
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Pipelining Lessons

° Pipelining doesn’t help 
latency of single task, it helps 
throughput of entire workload

° Pipeline rate limited by 
slowest pipeline stage

6 PM 7 8 9
Time

slowest pipeline stage

° Multiple tasks operating 
simultaneously (overlapped 
in execution, invisible to 
programmers)

° Potential speedup = Number 
pipe stages

A

B

C

T
a
s
k

O
r

30 40 40 40 40 20
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° Unbalanced lengths of pipe 
stages reduces speedup

° Time to “fill” pipeline and 
time to “drain” it reduces 
speedup
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Key Ideas Behind Pipelining

° Grading the mid term exams:
• 5 problems,  five people grading the exam
• Each person ONLY grades one problem
• Pass the exam to the next person  as soon as one finishes his part
• Assume each problem takes 0.5 hour to grade

- Each individual exam still takes 2.5 hours to grade
- But with 5 people, all exams can be graded much quicker

° The load instruction has 5 stages:
• Five independent functional units to work on each stage
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- Each functional unit is used only once
• The 2nd load can start as soon as the 1st finishes its Ieft stage
• Each load still takes five cycles to complete
• The throughput, however, is much higher

The Five Stages of Load
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

° Ifetch: Instruction Fetch
• Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch  and Instruction Decode

° Exec: Calculate the memory address

° Mem: Read the data from the Data Memory
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° Wr: Write the data back to the register file



Pipelining the Load Instruction

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Ifetch Reg/Dec Exec Mem Wr1st lw

Ifetch Reg/Dec Exec Mem Wr2nd lw

° The five independent functional units in the pipeline datapath are:
• Instruction Memory for the Ifetch stage
• Register File’s Read ports (bus A and busB) for the Reg/Dec stage
• ALU for the Exec stage

Ifetch Reg/Dec Exec Mem Wr2nd lw

Ifetch Reg/Dec Exec Mem Wr3rd lw
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• Data Memory for the Mem stage
• Register File’s Write port (bus W) for the Wr stage

° One instruction enters the pipeline every cycle
• One instruction comes out of the pipeline (complete) every cycle
• The “Effective” Cycles per Instruction  (CPI) is 1

Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Single Cycle Implementation:

Load Store Waste

Cycle 1 Cycle 2

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Ifetch Reg Exec Mem
Load Store

Ifetch
R-type
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Load Ifetch Reg Exec Mem Wr

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Ifetch Reg Exec Mem WrR-type



Why Pipeline?

° Suppose we execute 100 instructions

° Single Cycle Machine
• 45 ns/cycle  x 1 CPI x 100 inst = 4500 ns

° Multicycle Machine
• 10 ns/cycle x 4.1 CPI (due to inst mix) x 100 inst = 4100 ns

° Ideal pipelined machine
• 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

Compared to the Multi cycle implementation pipelining reduces the CPI!
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Compared to the Multi-cycle implementation, pipelining reduces the CPI!

Compared to the Single-cycle implementation, pipelining reduces the clock cycle time!

The Four Stages of R-type
Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec WrR-type

° Ifetch: Instruction Fetch
• Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch  and Instruction Decode

° Exec: ALU operates on the two register operands
• ALU operates on the two register operands

Update PC
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• Update PC

° Wr: Write the ALU output back to the register file



Pipelining the R-type and Load Instruction

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

If t h R /D E WR t

Ops!  We have a problem!

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type
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° We have a problem:
• Two instructions try to write to the register file at the same time!
• Only one write port

Important Observation

° Each functional unit can only be used once per instruction
( pipelining vs. multiple cycle)

° Each functional unit must be used at the same stage for all instructions:g
• Load uses Register File’s Write Port during  its 5th stage

• R-type uses Register File’s Write Port during its 4th stage

Ifetch Reg/Dec Exec Mem WrLoad
1 2 3 4 5

1 2 3 4
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Ifetch Reg/Dec Exec WrR-type



Solution 1: Insert “Bubble” into the Pipeline

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec Wr

° Insert a “bubble” into the pipeline to prevent 2 writes at the same cycle

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec

Ifetch Reg/Dec Exec WrR-type
Ifetch Reg/Dec Exec WrR-type Pipeline

Bubble
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• The control logic can be complex

° No instruction is completed during Cycle 5:
• The “Effective” CPI for load is 2

Solution 2: Delay R-type’s Write by One Cycle

° Delay R-type’s register write by one cycle:
• Now R-type instructions also use Reg File’s write port at Stage 5
• Mem stage is a NOOP stage: nothing is being done

Ifetch Reg/Dec Exec WrR type Mem
1 2 3 4 5

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec WrR-type Mem

Exec

Exec
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Ifetch Reg/Dec Mem WrR type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Exec

Exec

Exec



The Four Stages of Store
Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemStore Wr

° Ifetch: Instruction Fetch
• Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch  and Instruction Decode

° Exec: Calculate the memory address

° Mem: Write the data into the Data Memory
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The Four Stages of Beq

° Ifetch:

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemBeq Wr

Ifetch: 
• Instruction Fetch
• Fetch the instruction from the Instruction Memory

° Reg/Dec:
• Registers Fetch  and Instruction Decode

° Exec: 
ALU compares the t o register operands
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• ALU compares the two register operands
• Adder calculates the branch target address

° Mem:
• If the registers we compared in the Exec stage are the same,

- write the branch target address into the PC



A Pipelined Datapath
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Why not move to ID/RF?
Ok, but complicated control 

The Instruction Fetch Stage
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You are here!
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A Detail View of the Instruction Unit

° Location 20: lw  $1, 0x100($2)

Clk
You are here!
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The Decode / Register Fetch Stage
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Ifetch Reg/Dec Exec Mem

You are here!

° Location 20: lw  $1, 0x100($2)       $1 <- Mem[($2) +  0x100]
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Load’s Address Calculation Stage

Clk
Ifetch Reg/Dec Exec Mem

You are here!

° Location 20: lw  $1, 0x100($2)       $1 <- Mem[($2) +  0x100]
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A View of the Execution Unit (like in Single Cycle)
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A Detail View of the Execution Unit (Integrated)
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You are here!
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Load’s  Memory Access Stage

Clk
Ifetch Reg/Dec Exec Mem

You are here!

° Location 20: lw  $1, 0x100($2)       $1 <- Mem[($2) +  0x100]
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Load’s Write Back Stage

Clk
Ifetch Reg/Dec Exec Mem

You are somewhere out there!

° Location 20: lw  $1, 0x100($2)       $1 <- Mem[($2) +  0x100]
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How About Control Signals?

Ifetch Reg/Dec Exec Mem

° Key Observation: Control Signals at Stage N  = Func (Instr. at Stage N)
• N  =  Exec, Mem, or Wr

° Example: Controls Signals at Exec Stage = Func(Load’s Exec)
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Pipeline Control

° The Main Control generates the control signals during Reg/Dec
• Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
• Control signals for Mem (MemWr Branch) are used 2 cycles later
• Control signals for Wr (MemtoReg MemWr) are used 3 cycles later
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A More Extensive Pipelining Example

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem Wr0: Load

Ifetch Reg/Dec Exec Mem Wr4: R-type

Ifetch Reg/Dec Exec Mem Wr8: Store

Ifetch Reg/Dec Exec Mem Wr12: Beq (target is 1000)

End of
Cycle 4

End of
Cycle 5

End of
Cycle 6

End of
Cycle 7
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° End of Cycle 4: Load’s Mem, R-type’s Exec, Store’s Reg, Beq’s Ifetch

° End of Cycle 5: Load’s Wr, R-type’s Mem, Store’s Exec, Beq’s Reg

° End of Cycle 6: R-type’s Wr, Store’s Mem, Beq’s Exec

° End of Cycle 7: Store’s Wr, Beq’s Mem



Pipelining Example: End of Cycle 4
° 0: Load’s Mem    4: R-type’s Exec    8: Store’s Reg        12: Beq’s Ifetch

ALUOp=R-type12: Beq’s Ifet

8: Store’s  Reg 4: R-type’s  Exec 0: Load’s  Mem
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Pipelining Example: End of Cycle 5
° 0: Lw’s Wr   4: R’s Mem   8: Store’s Exec   12: Beq’s Reg   16: R’s Ifetch

ALUOp=Add16: R’s Ifet

12: Beq’s  Reg 8: Store’s  Exec 4: R-type’s  Mem

0: Load’s  Wr
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Pipelining Example: End of Cycle 6
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Pipelining Example: End of Cycle 7
° 8: Store’s Wr   12: Beq’s Mem   16: R’s Exec   20: R’s Reg   24: R’s Ifet
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Basic Performance Issues in Pipelining

° Pipelining increases the CPU instruction throughput, but does not 
reduce the execution time of an individual instruction 

• In fact, it slightly increases the execution time of an instruction

° Pipelining performance limitations
• Pipelining latency due to hazards
• Imbalance limits

- Clock cannot run faster than the time needed for the slowest 
pipeline stage; hardware also limits the stage partitioning

• Pipeline overhead
- Pipeline registers setup and latency (separating instructions 

at different stages so as to avoid interfering with each others) 
Clock skews maximum delay between the clock arrives at any
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- Clock skews, maximum delay between the clock arrives at any 
two registers (delay in signal arrival times)

° When pipelining is useless?

° once the clock cycle is as small as the sum of the clock skew and   
pipeline register (latch) latency, since no time left for useful work!

Pipelining Performance Example 

° A un-pipelined (multi-cycle) processor has a 1ns clock cycle, and it uses 
4 cycles for ALU operations and Branches, 5 for Memory operations. The 
relative frequencies of three operations is 40%, 20%, and 40%.

° Due to clock skew and setup, pipelining the processor adds 0.2ns into 
l k l S th i i li i h d th t i li i CPIclock cycle. Suppose there is no pipelining hazard so that pipelining CPI 

is 1, how much speedup will we gain from a pipeline?

Answer: 

For un-pipelined processor:
Ave. instruction exec. Time = clock cycle time * average CPI
(AIET) = 1 ns (40% * 4 + 20% *4 + 40% * 5)

4 4
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= 4.4 ns

For pipelined processor:
Ave. instruction exec. Time = (1 + 0.2) ns * 1 = 1.2 ns

Speedup = AIET_w/o pipeling  / AIET_w/pipeline = 4.4 ns / 1.2 ns = 3.7



Summary

° Disadvantages of the Single Cycle Processor
• Long cycle time
• Cycle time is too long for all instructions except the Load

° Multiple Clock Cycle Processor:y
• Divide the instructions into smaller steps
• Execute each step (instead of the entire instruction) in one cycle

° Pipeline Processor:
• Natural enhancement of the multiple clock cycle processor
• Each functional unit can only be used once per instruction
• If a instruction is going to use a functional unit:
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- it must use it at  the same stage as all other instructions
• Pipeline Control:

- Each stage’s control signal depends ONLY on the instruction 
that is currently in that stage

Where to get more information?

° Appendix A of CA4 (or CA3) text book:
• Chapter A.1 and A.3: 

° CO2: Chapter 6.1 – 6.3

CO3: Chapter 6.1 – 6.3
• David Patterson and John Hennessy, “Computer Organization & 

Design: The Hardware / Software Interface,” Morgan Kaufman 
Publishers; CO2 (2nd edition) and CO3 (3rd edition)
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