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Recap: A Single Cycle Processor
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Recap: Drawbacks of this Single Cycle Processor

° Long cycle time:
« Cycle time must be long enough for the load instruction:
- PC’'s Clock -to-Q +
- Instruction Memory Access Time +
- Register File Access Time +
- ALU Delay (address calculation) +
- Data Memory Access Time +
- Register File Setup & Writing Time +
- Clock Skew

° Cycle time is much longer than needed for all other instructions.
Examples:

* R-type instructions do not require data memory access
« Jump does not require ALU operation nor data memory access
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Recap: Overview of a Multiple Cycle Implementation

° The root of the single cycle processor’s problems:
* The cycle time has to be long enough for the slowest instruction

° Solution:
e Break theinstruction into smaller steps
« Execute each step (instead of the entire instruction) in one cycle
- Cycletime: time it takes to execute the longest step
- Keep all the steps to have similar length
« This is the essence of the multiple cycle processor

° The advantages of the multiple cycle processor:
* Cycle time is much shorter
« Different instructions take different number of cycles to complete
- Load takes five cycles
- Jump only takes three cycles
« Allows a functional unit to be used more than once per instruction
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Recap: Multiple Cycle Processor

° MCP: A functional unit to be used more than once per instruction
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Outline of Today’s Lecture--- Pipelining

° Introduction to the Concept of Pipelined Processor

° Pipelined Datapath and Pipelined Control

° How to Avoid Race Condition in a Pipeline Design?

° Pipeline Example: Instructions Interaction
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Preview: The Five Stages of Load

o
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Cycle l Cycle 2 Cycle 3 Cycle 4 ;Cycle 5

B B O e Y e N e

Load| Ifetch |Reg/Dec| Exec | Mem | Wr

Ifetch: Instruction Fetch

Reg/Dec: Registers Fetch and Instruction Decode

Exec: Calculate the memory address

Mem: Read the data from the Data Memory

Wr: Write the data back to the register file

UC. Colorado Springs

¢ Fetch the instruction from the Instruction Memory
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Pipelining: Its Natural!
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Laundry Example

Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold

BBED

(e

Washer takes 30 minutes

Dryer takes 40 minutes

“Folder” takes 20 minutes
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Recap: A Multlple Cycle Datapath (base for plpellnlng)

Instruction decode/ : o Me © Wie
: ns : address ; mory i
Instruction fetch ] register felch : calculation H access : back

H

* Allows afunctlonal unit to be used more than once per mstructlon
is NOT good for pipelining

- Adder + ALU; Instruction mem + Data mem

& 2003 Elsevier Science (USA). All rights reserved.
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Sequential Laundry

6PM 7 8 9 10 11 Midnight
| Time
30| 40 20 2030 40 20 30 40 2030 40 70
: | & (i o
. ler .7.
[ | © e -
& Jispar

° Sequential laundry takes 6 hours for 4 loads

° If they learned pipelining, how long would laundry take?
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Pipelined Laundry: Start work ASAP

6PM 7 8 9

10 11 Midnight

| Time

30‘40|40’40|40 ‘20|
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Pipelining Lessons

6PM 7 8 9

| Time
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° Pipelining doesn’t help

of single task, it helps
of entire workload

° Pipeline rate limited by

pipeline stage

tasks operating
simultaneously (overlapped
in execution, invisible to
programmers)

<]

Potential speedup =

o

Unbalanced lengths of pipe
stages reduces speedup

° Time to “fill” pipeline and
time to “ " it reduces
speedup
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Key Ideas Behind Pipelining

° Grading the mid term exams:
* 5 problems, five people grading the exam
« Each person ONLY grades one problem
« Pass the exam to the next person as soon as one finishes his part
¢ Assume each problem takes 0.5 hour to grade
- Each individual exam still takes 2.5 hours to grade
- But with 5 people, all exams can be graded much quicker

° The load instruction has 5 stages:
« Five independent functional units to work on each stage
- Each functional unit is used only once
« The 2nd load can start as soon as the 1st finishes its left stage
e Each load still takes five cycles to complete
¢ The throughput, however, is much higher
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The Five Stages of Load

Cycle 1 Cycle 2 Cycle 3 Cycle 4 ECycIeS

J N N N Iy I O Iy

Loadl Ifetch IReg/DecI Exec I Mem I Wr |

° Ifetch: Instruction Fetch
e Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch and Instruction Decode
° Exec: Calculate the memory address
° Mem: Read the data from the Data Memory

° Wr: Write the data back to the register file
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Pipelining the Load Instruction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 ECyCIe 5 ECycIe 6 ECycIe 7

7 A T Yy Y Y oy S oy S oy

1st IW| Ifetch IReg/Decl Exec I Mem | Wr |

2nd Iw| Ifetch |Reg/DecI Exec | Mem I Wr |

3rd IW| Ifetch IReg/Decl Exec I Mem | Wr |

° The five independent functional units in the pipeline datapath are:
* Instruction Memory for the Ifetch stage
» Register File’'s Read ports (bus A and busB) for the Reg/Dec stage
* ALU for the Exec stage
» Data Memory for the Mem stage
» Register File’'s Write port (bus W) for the Wr stage

° One instruction enters the pipeline every cycle
* One instruction comes out of the pipeline (complete) every cycle
» The “Effective” Cycles per Instruction (CPl)is 1
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Single Cycle, Multiple Cycle, vs. Pipeline

_ Cycle 1 ‘ Cycle 2 ——
Clk | | —_
Single Cycle Implementation:

Load Store i Waste

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5: Cycle 6 Cycle 7 Cycle 8 Cycle 9§Cycle 10

(SY’% N [ [ [ Oy I Iy oy

Multjple Cycle Implementation:
Load Store R-type
Ifetchl Reg | Exec | Mem | Wr Ifetchl Reg | Exec | Mem Ifetch|

Pipeline Implementation:

Load| Ifetchl Reg | Exec | Mem | Wr |

Store| Ifetchl Reg | Exec | Mem | Wr |

R-typel Ifetchl Reg | Exec | Mem | Wr |
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Why Pipeline?

° Suppose we execute 100 instructions

° Single Cycle Machine
* 45 ns/cycle x 1 CPI x 100 inst = 4500 ns

° Multicycle Machine
» 10 ns/cycle x 4.1 CPI (due to inst mix) x 100 inst = 4100 ns

Ideal pipelined machine
* 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

Compared to the Multi-cycle implementation, pipelining reduces the CPI!

Compared to the Single-cycle implementation, pipelining reduces the clock cycle time!
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The Four Stages of R-type

Cycle 1 Cycle 2 Cycle 3 Cycle 4

o e B e O e L e

R-typel Ifetch IReg/DecI Exec I Wr |

° Ifetch: Instruction Fetch
e Fetch the instruction from the Instruction Memory

o

Reg/Dec: Registers Fetch and Instruction Decode

° Exec: ALU operates on the two register operands
« ALU operates on the two register operands
* Update PC

° Wr: Write the ALU output back to the register file
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Pipelining the R-type and Load Instruction

{ CycleliCycle2 | Cycle3iCycle4 {Cycle5 iCycle6 Cycle7 iCycle8 i Cycle9 |

cook LT T LT LT 1T LT LT

R-type| Ifetch JReg/Dec] Exec | wr | Ops! \We have aiproblem!

R—typel Ifetch IReg/DecI Exec I Wr |

Loadl Ifetch IReg/DecI Exec I Mem [ wr

R—typel Ifetch IReg/DecI Exec Wr

~—

R—typel Ifetch IReg/DecI Exec I Wr

° We have a problem:

» Two instructions try to write to the register file at the same time!
* Only one write port
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Important Observation

° Each functional unit can only be used once per instruction

(pipelining vs. multiple cycle)

° Each functional unit must be used at the same stage for all instructions:
» Load uses Register File’s Write Port during its 5th stage

1 2 3 4 5
Loadl Ifetch IReg/DecI Exec I Mem I Wr I

* R-type uses Register File’'s Write Port during its 4th stage

1 2 3 4
R-typel Ifetch |Reg/Dec| Exec | Wr |
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Solution 1: Insert “Bubble” into the Pipeline

i Cycle 1E Cycle 2 § Cycle 3E Cycle 4 gCycle 5 ECycle 6 gCycle 7 ECycle 8 gCycle 9 i

clom LT I_IJ_I_I_IJ_l_I_IJ_I

| Ifetch |Reg/Dec| Exec | Wr | i
Load| Ifetch IReg/Decl Exec I Mem | Wr |

R-typel Ifetch |Reg/Dec| Exec | | Wr
R-typel Ifetch IReg/Dec Pipeline)] Exec | Wr i
R-typel Ifetch | Bubble Reg/Decl Exec | Wr |
| Ifetch |Reg/DecI Exec |

° Insert a “bubble” into the pipeline to prevent 2 writes at the same cycle
« The control logic can be complex

° No instruction is completed during Cycle 5:
« The “Effective” CPI for load is 2
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Solution 2: Delay R-type’s Write by One Cycle

° Delay R-type’s register write by one cycle:
* Now R-type instructions also use Reg File’s write port at Stage 5
« Mem stage is a NOOP stage: nothing is being done
1 2 3 4 5
R-typel Ifetch |Reg/Dec| Exec | Mem | Wr |

Cycle 1 Cycle 2 Cycle 3 Cycle 4 § Cycle 5 i Cycle 6 : Cycle 7 Cycle 8 Cycle 9

com LI LT I_I_I_I_I_l_l_l_l_l_l_l

Rtypel Ifetch |Reg/DecI Exec | Mem I Wr |

R-type| Ifetch IReg/Decl Exec I Mem | Wr |

Loadl Ifetch |Reg/DecI Exec | Mem I Wr |

R-type| Ifetch IReg/Decl Exec I Mem | Wr |

R-typel Ifetch |Reg/DecI Exec | Mem I Wr
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The Four Stages of Store

Cycle l Cycle 2 Cycle 3 Cycle 4

e

Store| Ifetch |Reg/Dec| Exec | Mem | Wr |

° Ifetch: Instruction Fetch
¢ Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch and Instruction Decode
° Exec: Calculate the memory address

° Mem: Write the data into the Data Memory

CS420/520 pipeline.23 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

The Four Stages of Beq

Cycle 1 Cycle 2 Cycle 3 Cycle 4

o e B e O e L e

Beql Ifetch IReg/DecI Exec I Mem | Wr |

° Ifetch:
* Instruction Fetch
 Fetch the instruction from the Instruction Memory

° Reg/Dec:
» Registers Fetch and Instruction Decode

° Exec:
* ALU compares the two register operands
» Adder calculates the branch target address

° Mem:
« If the registers we compared in the Exec stage are the same,
- write the branch target address into the PC
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A Pipelined Datapath
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The Instruction Fetch Stage
° Location 20: lw $1, 0x100($2)  $1 <- Mem[($2) + 0x100]

Clk l_l

You are here!

1 Ifetch ;. Reg/Dec 1 Exec 1 Mem 1
1 [ 1 [ [
: | RegWr ! ExtOp ALUOp ! Branch !
[ t t t 1
1 1 1 1 1
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A Detail View of the Instruction Unit

° Location 20: lw $1, 0x100($2)

You are here!

Clk
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The Decode / Register Fetch Stage

° Location 20: lw $1, 0x100($2) $1 <- Mem[($2) + 0x100]

/You are here!
Clk l |

|

1 Ifetch 1 Reg/Dec 1: Exec 1 Mem 1
1 1 1 [ [
' | RegWr | ExtOp ALUOp | Branch !
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Load’s Address Calculation Stage
° Location 20: lw $1, 0x100($2) $1 <- Mem[($2) + 0x100]

You are here!

1 Ifetch 1 Reg/Dec 1: Exec Iz Mem 1
X Ve ¥ ALUOp=Add | ° Ve
I i RegWr 1 ExtOp=1 ' Branch |
1 t t t 1
1 ,—-'1— 1 1 1 1
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A View of the Execution Unit (like in Single Cycle)
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A Detail View of the Execution Unit (Integrated)

You are here!
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Load’s Memory Access Stage
° Location 20: lw $1, 0x100($2) $1 <- Mem[($2) + 0x100]
You are here! \
el L[ L[ 1
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Load’s Write Back Stage
° Location 20: lw $1, 0x100($2) $1 <- Mem[($2) + 0x100]

You are somewhere out there! \

1 Ifetch 1 Reg/Dec 1 Exec 1: Mem 1 Wr
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How About Control Signals?

° Key Observation: Control Signals at Stage N = Func (Instr. at Stage N)
* N = Exec, Mem, or Wr

° Example: Controls Signals at Exec Stage = Func(Load’s Exec)

1 ;. lfetch 1 Reg/Dec 1 Exec 1: Mem 1
1 [ 1 [ [
Wr ALUOp=Add
1 1 1 1 1
1 , Regwr 1 ExtOp=1 | Branch |
1 t t t 1
1 ,—'— 1 1 1 1
= & 5 iy 4
= = Pe |—[m
z £ S Imm16 | Imm1] S -
— @
| | —] A i ra —| g =P | busA || 3 Zerg Blata g
_ —|m busB - em s
= —|Rb ol Exec |=>|9 RAD = ]
Z RUIRFile| |8 Unit | x| —{wa o |
Rt LRW Dj g’ g Di % E
| 1] ~ =R |2 |
|| Rd || ‘u > i _7
RegDst=0 ALUSrc=1 MemWr MemtoRqu
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Pipeline Control

° The Main Control generates the control signals during Reg/Dec
« Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
» Control signals for Mem (MemWr Branch) are used 2 cycles later
« Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

: : Reg/Dec : Exec : : Mem : Wr
1: 1 1 1
1 | | |
Q ExtOp ExtOp Q Q
ALUSrc ALUSrc
m
= ALUOp ALUOp E £
S Main | Reqpst RegDst ) 2
% |—| Control 3 2
K Memwr MemWwr | Memwr 2
@ Branch Branch 5| Branch S,
g & g
MemtoReg MemtoReq MemtoReg = | MemtoReg
RegWr RegWr RegWr RegWr
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A More Extensive Pipelining Example
Cycle 1§Cycle2 Cycle 3§Cycle4 ECycIeS ECycIeB ECycIe? ECycIeB

o LI 1T N

0: Loadl Ifetch |Reg/Dec| Exec | Mem Wr |

4: R-type| Ifetch |Reg/Dec| Exec | Mem | Wr |

8: Storel Ifetch |Reg/Dec| Exec | Mem | Wr

12: Beq (target is 1000)| Ifetch ||/Reg/De Exec Mem Wr

Endof Endof Endof Endof
Cycle4 Cycle5 Cycle6 Cycle7

° End of Cycle 4: Load’s Mem, R-type’s Exec, Store’'s Reg, Beq's Ifetch
° End of Cycle 5: Load’s Wr, R-type’s Mem, Store’s Exec, Beq’'s Reg
° End of Cycle 6: R-type’s Wr, Store’s Mem, Beq’s Exec

° End of Cycle 7: Store’s Wr, Beq’'s Mem
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Pipelining

Example: End of Cycle 4

° 0: Load’'s Mem

4: R-type’s Exec

8: Store’s Reg

12: Beq's Ifetch

|T| . 8:Store’s Reg . 4:R-type’s Execr ; 0: Load’s Mem 1
H { { { 1
Vi, , 1 1 1 1
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RegDst=1 ALUSrc=0

Clk—r\,. MemtoReg=x

MemWr=0
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Pipelining Example: End of Cycle 5

°0:Lw'sWr 4:R's Mem 8: Store’s Exec 12: Beq's Reg 16: R’s Ifetch

- 1 , 12: Beq’s Reg s 8: Store’s Exec ' 4: R-type’s Mem 1
1 , 1: 0o ’ 1 1
VP16 Rs Ifet ) 0: Load’s Wr P ALUOD=Add !
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I I ' I I
< | 2 e L =
o |=—p| — — PC+4 |—|m
3 Q | Immi6 O -3
$ S o m - | IMM16 §
| =] A | | Rs o X |=—>{busa [, 3 Zerq | Data
° 2 2 oy - busB Mem
—_ - w
c = Rb = =»|8 [=—{rRAD
= S Rt q =] N
= =3 RFile = = WA
5 Rw Dj b3 >(2 [——LD
W ) e A =
sllr___ J|w 1) 2

RegDst=x a| Usrc=1

UC. Colorado Springs

MemtoReg=1

clk—
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Pipelining Example: End of Cycle 6

° 4:R's Wr 8: Store’s Mem 12: Beq's Exec 16: R's Reg 20: R’s Ifet

- 1 : . 16: R-type’s Reg : . 12: Beq’s Exec ! 8: Store’s Mem !
! 20: ! i 4:R-type’s Wr ! e ) !
, R-type’s Ifet | X ALUOp=Sub . |
\ , RegWr=1 , ExtOp=1 . Branch=0 |
1 t t t 1
1 ,—I— 1 Clk 1 1 1
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Pipelining Example: End of Cycle 7
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Basic Performance Issues in Pipelining

° Pipelining increases the CPU instruction throughput, but does not
reduce the execution time of an individual instruction

« In fact, it slightly increases the execution time of an instruction

° Pipelining performance limitations
» Pipelining latency due to hazards
* Imbalance limits

- Clock cannot run faster than the time needed for the slowest
pipeline stage; hardware also limits the stage partitioning

» Pipeline overhead

- Pipeline registers setup and latency (separating instructions
at different stages so as to avoid interfering with each others)

- Clock skews, maximum delay between the clock arrives at any
two registers (delay in signal arrival times)

°When pipelining is useless?

°once the clock cycle is as small as the sum of the clock skew and
pipeline register (latch) latency, since no time left for useful work!
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Pipelining Performance Example

° A un-pipelined (multi-cycle) processor has a 1ns clock cycle, and it uses
4 cycles for ALU operations and Branches, 5 for Memory operations. The
relative frequencies of three operations is 40%, 20%, and 40%.

° Due to clock skew and setup, pipelining the processor adds 0.2ns into
clock cycle. Suppose there is no pipelining hazard so that pipelining CPI
is 1, how much speedup will we gain from a pipeline?

Answer:

For un-pipelined processor:

Ave. instruction exec. Time = clock cycle time * average CPI

(AIET) =1ns (40% * 4 + 20% *4 + 40% * 5)
=44ns

For pipelined processor:
Ave. instruction exec. Time =(1+0.2)ns*1=1.2ns

Speedup = AIET_w/o pipeling /AIET _w/pipeline=4.4ns/1.2ns =37

CS420/520 pipeline.42 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03




Summary

° Disadvantages of the Single Cycle Processor
* Long cycle time
e Cycletimeis too long for all instructions except the Load

° Multiple Clock Cycle Processor:
« Divide the instructions into smaller steps
* Execute each step (instead of the entire instruction) in one cycle

° Pipeline Processor:
« Natural enhancement of the multiple clock cycle processor
e Each functional unit can only be used once per instruction
 If aiinstruction is going to use a functional unit:
- it mustuseit at the same stage as all other instructions
 Pipeline Control:

- Each stage’s control signal depends ONLY on the instruction
that is currently in that stage
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Where to get more information?

° Appendix A of CA4 (or CA3) text book:
e Chapter A.1 and A.3:

° CO2: Chapter 6.1 -6.3

CO3: Chapter 6.1 — 6.3

¢ David Patterson and John Hennessy, “Computer Organization &
Design: The Hardware / Software Interface,” Morgan Kaufman
Publishers; CO2 (2nd edition) and CO3 (3rd edition)
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