
CS420/520

Dr. Xiaobo Zhou
Department of Computer Science

Computer Architecture I

Designing a Pipeline Processor
(CA4: Appendix A)

CS420/520 pipeline.1 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Recap: A Single Cycle Processor

Instruction
Fetch Unit

Clk

Instruction<31:0>Jump

Branch

<21:25>

<16:20>

<11:15>

<0:15>

Main
Control

op

ALUop

RegDst
ALUSrc

:

<31:26>

Zero

3

32

ALUctr

Clk

busW

RegWr

32
32

busA

busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

Mux

M

MemtoRegMemWr

A
L

U

Zero

0
0

10
Imm16

Rd
ALU

Controlfunc

3

<5:0>

CS420/520 pipeline.2 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Clk 32

E
xtender

M
ux

3216
imm16

ALUSrc

ExtOp

M
ux

Clk

Data In
WrEn

32
Adr

Data
Memory

32
1

1

Instr<15:0>

Recap: Drawbacks of this Single Cycle Processor

° Long cycle time:
• Cycle time must be long enough for the load instruction:

- PC’s Clock -to-Q +
- Instruction Memory Access Time +Instruction Memory Access Time
- Register File Access Time +
- ALU Delay (address calculation) +
- Data Memory Access Time +
- Register File Setup & Writing Time +
- Clock Skew

° Cycle time is much longer than needed for all other instructions.

CS420/520 pipeline.3 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

y g
Examples:

• R-type instructions do not require data memory access
• Jump does not require ALU operation nor data memory access

Recap: Overview of a Multiple Cycle Implementation

° The root of the single cycle processor’s problems:
• The cycle time has to be long enough for the slowest instruction

° Solution:
• Break the instruction into smaller steps
• Execute each step (instead of the entire instruction) in one cycle

- Cycle time: time it takes to execute the longest step
- Keep all the steps to have similar length

• This is the essence of the multiple cycle processor

° The advantages of the multiple cycle processor:
Cycle time is much shorter

CS420/520 pipeline.4 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• Cycle time is much shorter
• Different instructions take different number of cycles to complete

- Load takes five cycles
- Jump only takes three cycles

• Allows a functional unit to be used more than once per instruction

Recap: Multiple Cycle Processor

° MCP: A functional unit to be used more than once per instruction

MemWr
32

IRWr RegWr

PCWr

ALUSelARegDst M 1 Target
32

Zero
PCWrCond PCSrc BrWr

IorD

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

32

A
L

U

32
32

ALU

Instruction R
eg

32

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

Rs

Rt

M
ux

0

1

Rt

Rd

Mux 01

M
ux

0

1

32

PC

M
ux

0

1
32

0

1

2
3

4

ux
0

Zero

32

CS420/520 pipeline.5 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

ALUOp

Control
Mux 01

MemtoReg

Extend

ExtOp

3

16Imm 32

<< 2

ALUSelB

Outline of Today’s Lecture--- Pipelining

° Introduction to the Concept of Pipelined Processor

° Pipelined Datapath and Pipelined Control

° How to Avoid Race Condition in a Pipeline Design?

° Pipeline Example: Instructions Interaction

CS420/520 pipeline.6 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Preview: The Five Stages of Load
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

° Ifetch: Instruction Fetch
• Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch and Instruction Decode

° Exec: Calculate the memory address

° Mem: Read the data from the Data Memory

CS420/520 pipeline.7 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Wr: Write the data back to the register file

Pipelining: Its Natural!

° Laundry Example

° Ann, Brian, Cathy, Dave
each have one load of clothes A B C D
to wash, dry, and fold

° Washer takes 30 minutes

° Dryer takes 40 minutes

CS420/520 pipeline.8 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° “Folder” takes 20 minutes

Recap: A Multiple Cycle Datapath (base for pipelining)

Beqz

CS420/520 pipeline.9 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• Allows a functional unit to be used more than once per instruction
is NOT good for pipelining

- Adder + ALU; Instruction mem + Data mem

Sequential Laundry

6 PM 7 8 9 10 11 Midnight
Time

A

B

C

30 40 20 30 40 20 30 40 20 30 40 20
T
a
s
k

O
r

CS420/520 pipeline.10 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Sequential laundry takes 6 hours for 4 loads

° If they learned pipelining, how long would laundry take?

C

D

d
e
r

Pipelined Laundry: Start work ASAP

6 PM 7 8 9 10 11 Midnight
Time

A

B

C

T
a
s
k

O
r

30 40 40 40 40 20

CS420/520 pipeline.11 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Pipelined laundry takes 3.5 hours for 4 loads

C

D

d
e
r

Pipelining Lessons

° Pipelining doesn’t help
latency of single task, it helps
throughput of entire workload

° Pipeline rate limited by
slowest pipeline stage

6 PM 7 8 9
Time

slowest pipeline stage

° Multiple tasks operating
simultaneously (overlapped
in execution, invisible to
programmers)

° Potential speedup = Number
pipe stages

A

B

C

T
a
s
k

O
r

30 40 40 40 40 20

CS420/520 pipeline.12 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Unbalanced lengths of pipe
stages reduces speedup

° Time to “fill” pipeline and
time to “drain” it reduces
speedup

C

D

d
e
r

Key Ideas Behind Pipelining

° Grading the mid term exams:
• 5 problems, five people grading the exam
• Each person ONLY grades one problem
• Pass the exam to the next person as soon as one finishes his part
• Assume each problem takes 0.5 hour to grade

- Each individual exam still takes 2.5 hours to grade
- But with 5 people, all exams can be graded much quicker

° The load instruction has 5 stages:
• Five independent functional units to work on each stage

CS420/520 pipeline.13 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

- Each functional unit is used only once
• The 2nd load can start as soon as the 1st finishes its Ieft stage
• Each load still takes five cycles to complete
• The throughput, however, is much higher

The Five Stages of Load
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

° Ifetch: Instruction Fetch
• Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch and Instruction Decode

° Exec: Calculate the memory address

° Mem: Read the data from the Data Memory

CS420/520 pipeline.14 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° Wr: Write the data back to the register file

Pipelining the Load Instruction

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Ifetch Reg/Dec Exec Mem Wr1st lw

Ifetch Reg/Dec Exec Mem Wr2nd lw

° The five independent functional units in the pipeline datapath are:
• Instruction Memory for the Ifetch stage
• Register File’s Read ports (bus A and busB) for the Reg/Dec stage
• ALU for the Exec stage

Ifetch Reg/Dec Exec Mem Wr2nd lw

Ifetch Reg/Dec Exec Mem Wr3rd lw

CS420/520 pipeline.15 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• Data Memory for the Mem stage
• Register File’s Write port (bus W) for the Wr stage

° One instruction enters the pipeline every cycle
• One instruction comes out of the pipeline (complete) every cycle
• The “Effective” Cycles per Instruction (CPI) is 1

Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Single Cycle Implementation:

Load Store Waste

Cycle 1 Cycle 2

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Ifetch Reg Exec Mem
Load Store

Ifetch
R-type

CS420/520 pipeline.16 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Load Ifetch Reg Exec Mem Wr

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Ifetch Reg Exec Mem WrR-type

Why Pipeline?

° Suppose we execute 100 instructions

° Single Cycle Machine
• 45 ns/cycle x 1 CPI x 100 inst = 4500 ns

° Multicycle Machine
• 10 ns/cycle x 4.1 CPI (due to inst mix) x 100 inst = 4100 ns

° Ideal pipelined machine
• 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

Compared to the Multi cycle implementation pipelining reduces the CPI!

CS420/520 pipeline.17 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Compared to the Multi-cycle implementation, pipelining reduces the CPI!

Compared to the Single-cycle implementation, pipelining reduces the clock cycle time!

The Four Stages of R-type
Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec WrR-type

° Ifetch: Instruction Fetch
• Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch and Instruction Decode

° Exec: ALU operates on the two register operands
• ALU operates on the two register operands

Update PC

CS420/520 pipeline.18 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• Update PC

° Wr: Write the ALU output back to the register file

Pipelining the R-type and Load Instruction

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

If t h R /D E WR t

Ops! We have a problem!

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

CS420/520 pipeline.19 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° We have a problem:
• Two instructions try to write to the register file at the same time!
• Only one write port

Important Observation

° Each functional unit can only be used once per instruction
(pipelining vs. multiple cycle)

° Each functional unit must be used at the same stage for all instructions:g
• Load uses Register File’s Write Port during its 5th stage

• R-type uses Register File’s Write Port during its 4th stage

Ifetch Reg/Dec Exec Mem WrLoad
1 2 3 4 5

1 2 3 4

CS420/520 pipeline.20 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Ifetch Reg/Dec Exec WrR-type

Solution 1: Insert “Bubble” into the Pipeline

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec Wr

° Insert a “bubble” into the pipeline to prevent 2 writes at the same cycle

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec

Ifetch Reg/Dec Exec WrR-type
Ifetch Reg/Dec Exec WrR-type Pipeline

Bubble

CS420/520 pipeline.21 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• The control logic can be complex

° No instruction is completed during Cycle 5:
• The “Effective” CPI for load is 2

Solution 2: Delay R-type’s Write by One Cycle

° Delay R-type’s register write by one cycle:
• Now R-type instructions also use Reg File’s write port at Stage 5
• Mem stage is a NOOP stage: nothing is being done

Ifetch Reg/Dec Exec WrR type Mem
1 2 3 4 5

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec WrR-type Mem

Exec

Exec

CS420/520 pipeline.22 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Ifetch Reg/Dec Mem WrR type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Exec

Exec

Exec

The Four Stages of Store
Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemStore Wr

° Ifetch: Instruction Fetch
• Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch and Instruction Decode

° Exec: Calculate the memory address

° Mem: Write the data into the Data Memory

CS420/520 pipeline.23 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

The Four Stages of Beq

° Ifetch:

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemBeq Wr

Ifetch:
• Instruction Fetch
• Fetch the instruction from the Instruction Memory

° Reg/Dec:
• Registers Fetch and Instruction Decode

° Exec:
ALU compares the t o register operands

CS420/520 pipeline.24 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

• ALU compares the two register operands
• Adder calculates the branch target address

° Mem:
• If the registers we compared in the Exec stage are the same,

- write the branch target address into the PC

A Pipelined Datapath

Clk

Ifetch Reg/Dec Exec Mem Wr

IF/ID

ID
/E

x

E
x/M

e

M
em

/W

PC

Data
MemI

A Ra

RegWr ExtOp

E

busA
busB

Imm16

ALUOp

Imm16

PC+4 PC+4

Rs

PC
+4

Zero

Branch

1
0

CS420/520 pipeline.25 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

D
 R

egister

x R
egister

em
 R

egister

W
r R

egister

WA
Di

RA Do

IU
nit

I

RFile
Di

Rb

Rw

MemWr

Exec
Unit

ALUSrc

M
ux

1

0

MemtoReg

1
0

RegDst

Rt

Rd

Rt

Why not move to ID/RF?
Ok, but complicated control

The Instruction Fetch Stage

Clk
Ifetch Reg/Dec Exec Mem

You are here!

° Location 20: lw $1, 0x100($2) $1 <- Mem[($2) + 0x100]

IF/ID
: lw

 $

ID
/E

x

E
x/M

e

M
em

/W

PC
 = 24 Data

Me mI

A Ra

RegWr ExtOp

E

busA
busB

Imm16

ALUOp

Imm16

PC+4 PC+4

Rs

PC
+4

Zero

Branch

1
0

CS420/520 pipeline.26 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

$1, 100 ($2)

x R
egister

em
 R

egister

W
r R

egister

WA
Di

RA Do

IU
nit

I

RFile
Di

Rb

Rw

MemWr

Exec
Unit

ALUSrc

M
ux

1

0

MemtoReg

1
0

RegDst

Rt

Rd

Rt

A Detail View of the Instruction Unit

° Location 20: lw $1, 0x100($2)

Clk
You are here!

IF/ID
:

PC
 = 2

1
0

20

A
dder

“4”

Clk

Ifetch Reg/Dec

CS420/520 pipeline.27 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

: lw
 $1, 100 ($2)

24

Instruction
Memory

Instruction

Address

The Decode / Register Fetch Stage

Clk
Ifetch Reg/Dec Exec Mem

You are here!

° Location 20: lw $1, 0x100($2) $1 <- Mem[($2) + 0x100]

IF/ID
:

ID
/E

x: R
eg

E
x/M

e

M
em

/W

PC

Data
Me mI

A Ra

RegWr ExtOp

E

busA
busB

Imm16

ALUOp

Imm16

PC+4 PC+4

Rs

PC
+4

Zero

Branch

1
0

CS420/520 pipeline.28 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

g. 2 &
 0x100

em
 R

egister

W
r R

egister

WA
Di

RA Do

IU
nit

I

RFile
Di

Rb

Rw

MemWr

Exec
Unit

ALUSrc

M
ux

1

0

MemtoReg

1
0

RegDst

Rt

Rd

Rt

Load’s Address Calculation Stage

Clk
Ifetch Reg/Dec Exec Mem

You are here!

° Location 20: lw $1, 0x100($2) $1 <- Mem[($2) + 0x100]

IF/ID
: ID

/E
x

E
x/M

em
: L

M
em

/W

PC

Data
MemI

A Ra

RegWr ExtOp=1

E

busA
busB

Imm16

ALUOp=Add

Imm16

PC+4 PC+4

Rs

PC
+4

Zero

Branch

1
0

CS420/520 pipeline.29 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

x R
egister

L
oad’s A

ddress

W
r R

egister

WA
Di

RA Do

IU
nit

I

RFile
Di

Rb

Rw

MemWr

Exec
Unit

ALUSrc=1

M
ux

1

0

MemtoReg

1
0

RegDst=0

Rt

Rd

Rt

A View of the Execution Unit (like in Single Cycle)

Clk

Exec

You are here!

Mem

Move to stage 2?

ID
/E

x R
egister

E
x/M

em
: L

oad’s M
em

o

32
busA

busB

A
L

U

Zero

0 32
ALUout

A
dder

<< 2

32
PC+4

Target

32

Move to stage 2?
32-bits imm in ID/Ex

SignExt

CS420/520 pipeline.30 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

r ory A
ddressALU

Control

ALUctr

32 E
xtender

M
ux

16

imm16

ALUSrc=1ExtOp=1

3

0

1

32

32

3 ALUOp=Add

A Detail View of the Execution Unit (Integrated)

Clk

Exec

You are here!

Mem

If Beq? Beqz?

ID
/E

x R
egister

E
x/M

em
: L

oad’s M
em

o

32
busA

busB

A
L

U
Zero

0 32
ALUout

A
dder

<< 2

32
PC+4

Target

32

If Beq? Beqz?

CS420/520 pipeline.31 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

r ory A
ddressALU

Control

ALUctr

32 E
xtender

M
ux

16

imm16

ALUSrc=1ExtOp=1

3

0

1

32

32

3 ALUOp=Add
Integrated

Load’s Memory Access Stage

Clk
Ifetch Reg/Dec Exec Mem

You are here!

° Location 20: lw $1, 0x100($2) $1 <- Mem[($2) + 0x100]

IF/ID
: ID

/E
x

E
x/M

e

M
em

/W
r:

PC

Data
MemI

A Ra

RegWr ExtOp

E

busA
busB

Imm16

ALUOp

Imm16

PC+4 PC+4

Rs

PC
+4

Zero

Branch=0

1
0

CS420/520 pipeline.32 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

x R
egister

em
 R

egister

L
oad’s D

ata

WA
Di

RA Do

IU
nit

I

RFile
Di

Rb

Rw

MemWr=0

Exec
Unit

ALUSrc

M
ux

1

0

MemtoReg

1
0

RegDst

Rt

Rd

Rt

Load’s Write Back Stage

Clk
Ifetch Reg/Dec Exec Mem

You are somewhere out there!

° Location 20: lw $1, 0x100($2) $1 <- Mem[($2) + 0x100]

Wr

IF/ID
: ID

/E
x

E
x/M

e

M
em

/W

PC

Data
MemI

A Ra

RegWr=1 ExtOp

E

busA
busB

Imm16

ALUOp

Imm16

PC+4 PC+4

Rs

PC
+4

Zero

Branch

1
0

CS420/520 pipeline.33 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

x R
egister

em
 R

egister

W
r R

egister

WA
Di

RA Do

IU
nit

I

RFile
Di

Rb

Rw

MemWr

Exec
Unit

ALUSrc

M
ux

1

0

MemtoReg=1

1
0

RegDst

Rt

Rd

Rt

How About Control Signals?

Ifetch Reg/Dec Exec Mem

° Key Observation: Control Signals at Stage N = Func (Instr. at Stage N)
• N = Exec, Mem, or Wr

° Example: Controls Signals at Exec Stage = Func(Load’s Exec)

IF/ID
: ID

/E
x

E
x/M

em
: L

M
em

/W

PC

Data
MemI

A Ra

RegWr ExtOp=1

E

busA
busB

Imm16

ALUOp=Add

Imm16

PC+4 PC+4

Rs

PC
+4

Zero

Branch

1
0

Wr

CS420/520 pipeline.34 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

x R
egister

L
oad’s A

ddress

W
r R

egister

WA
Di

RA Do

IU
nit

I

RFile
Di

Rb

Rw

MemWr

Exec
Unit

ALUSrc=1

M
ux

1

0

MemtoReg

1
0

RegDst=0

Rt

Rd

Rt

Pipeline Control

° The Main Control generates the control signals during Reg/Dec
• Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
• Control signals for Mem (MemWr Branch) are used 2 cycles later
• Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

IF/ID

ID
/E

x

E
x/M

em

M
em

/W

Reg/Dec Exec Mem

ExtOp

ALUOp
RegDst

ALUSrc

Main
C t l

ExtOp

ALUOp
RegDst

ALUSrc

Wr

CS420/520 pipeline.35 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

D
 R

egister

x R
egister

m
 R

egister

W
r R

egister

Branch
MemWr

MemtoReg
RegWr

Control

MemtoReg
RegWr

MemtoReg
RegWr

MemtoReg
RegWr

Branch
MemWr

Branch
MemWr

A More Extensive Pipelining Example

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem Wr0: Load

Ifetch Reg/Dec Exec Mem Wr4: R-type

Ifetch Reg/Dec Exec Mem Wr8: Store

Ifetch Reg/Dec Exec Mem Wr12: Beq (target is 1000)

End of
Cycle 4

End of
Cycle 5

End of
Cycle 6

End of
Cycle 7

CS420/520 pipeline.36 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

° End of Cycle 4: Load’s Mem, R-type’s Exec, Store’s Reg, Beq’s Ifetch

° End of Cycle 5: Load’s Wr, R-type’s Mem, Store’s Exec, Beq’s Reg

° End of Cycle 6: R-type’s Wr, Store’s Mem, Beq’s Exec

° End of Cycle 7: Store’s Wr, Beq’s Mem

Pipelining Example: End of Cycle 4
° 0: Load’s Mem 4: R-type’s Exec 8: Store’s Reg 12: Beq’s Ifetch

ALUOp=R-type12: Beq’s Ifet

8: Store’s Reg 4: R-type’s Exec 0: Load’s Mem

IF/ID
: B

eq In

ID
/E

x: Store

E
x/M

em
: R

-t

M
em

/W
r: L

PC
 = 16 Data

Mem
RA Do

IU

A Ra

Rb

RegWr=0 ExtOp=x

Exec

busA
busB

Imm16

1

Imm16

PC+4 PC+4

Rs

PC
+4

Zero

Branch=0

1
0

Clk

CS420/520 pipeline.37 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

nstruction

’s busA
 &

 B

type’s R
esult

L
oad’s D

out

WA
Di

RA Do

U
nit

I

RFile
Di

Rb

Rw

Unit

ALUSrc=0

M
ux

1

0

MemtoReg=x

1
0

RegDst=1

Rt

Rd

Rt

MemWr=0
Clk

Pipelining Example: End of Cycle 5
° 0: Lw’s Wr 4: R’s Mem 8: Store’s Exec 12: Beq’s Reg 16: R’s Ifetch

ALUOp=Add16: R’s Ifet

12: Beq’s Reg 8: Store’s Exec 4: R-type’s Mem

0: Load’s Wr

IF/ID
: Instru

ID
/E

x: B
eq’

E
x/M

em
: Sto

M
em

/W
r: R

-t

PC
 = 20 Data

Mem
RA Do

IU

A Ra

Rb

RegWr=1 ExtOp=1

Exec

busA
busB

Imm16

1

Imm16

PC+4 PC+4

Rs

PC
+4

Zero

Branch=0

1
0

Clk

CS420/520 pipeline.38 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

uction @
 16

s busA
 &

 B

re’s A
ddress

type’s R
esult

WA
Di

RA Do

U
nit

I

RFile
Di

Rb

Rw

Unit

ALUSrc=1

M
ux

1

0

MemtoReg=1

1
0

RegDst=x

Rt

Rd

Rt

MemWr=0
Clk

Pipelining Example: End of Cycle 6
° 4: R’s Wr 8: Store’s Mem 12: Beq’s Exec 16: R’s Reg 20: R’s Ifet

R W 1 ExtOp 1
ALUOp=Sub

Branch 0

20:
R-type’s Ifet

16: R-type’s Reg 12: Beq’s Exec 8: Store’s Mem

4: R-type’s Wr

IF/ID
: Instru

ID
/E

x:R
-type’

E
x/M

em
: B

eq

M
em

/W
r: N

ot

PC
 = 24 Data

Mem
RA Do

IU
n

A Ra

Rb

RegWr=1 ExtOp=1

Exec

busA
busB

Imm16

1

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch=0

1
0

Clk

CS420/520 pipeline.39 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

ction @
 20

’s busA
 &

 B

q’s R
esults

thing for St

WA
Di

nit

I

RFile
DiRw

Unit

ALUSrc=0

M
ux

1

0

MemtoReg=0

1
0

RegDst=x

Rt

Rd

Rt

MemWr=1
Clk

Pipelining Example: End of Cycle 7
° 8: Store’s Wr 12: Beq’s Mem 16: R’s Exec 20: R’s Reg 24: R’s Ifet

R W 0 ExtOp x
ALUOp=R-type

Branch 1

24:
R-type’s Ifet

20: R-type’s Reg 16: R-type’s Exec 12: Beq’s Mem

8: Store’s Wr

IF/ID
: Instru

ID
/E

x:R
-type’

E
x/M

em
: R

typ

M
em

/W
r:N

oth

PC
 = 1000

Data
Mem
RA Do

IU
n

A Ra

Rb

RegWr=0 ExtOp=x

Exec

busA
busB

Imm16

1

Imm16

PC+4 PC+4

Rs

Rt

PC
+4

Zero

Branch=1

1
0

Clk

CS420/520 pipeline.40 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

ction @
 24

’s busA
 &

 B

pe’s R
esults

hing for B
eq

WA
Di

nit

I

RFile
DiRw

Unit

ALUSrc=0

M
ux

1

0

MemtoReg=x

1
0

RegDst=1

Rt

Rd

Rt

MemWr=0
Clk

Basic Performance Issues in Pipelining

° Pipelining increases the CPU instruction throughput, but does not
reduce the execution time of an individual instruction

• In fact, it slightly increases the execution time of an instruction

° Pipelining performance limitations
• Pipelining latency due to hazards
• Imbalance limits

- Clock cannot run faster than the time needed for the slowest
pipeline stage; hardware also limits the stage partitioning

• Pipeline overhead
- Pipeline registers setup and latency (separating instructions

at different stages so as to avoid interfering with each others)
Clock skews maximum delay between the clock arrives at any

CS420/520 pipeline.41 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

- Clock skews, maximum delay between the clock arrives at any
two registers (delay in signal arrival times)

° When pipelining is useless?

° once the clock cycle is as small as the sum of the clock skew and
pipeline register (latch) latency, since no time left for useful work!

Pipelining Performance Example

° A un-pipelined (multi-cycle) processor has a 1ns clock cycle, and it uses
4 cycles for ALU operations and Branches, 5 for Memory operations. The
relative frequencies of three operations is 40%, 20%, and 40%.

° Due to clock skew and setup, pipelining the processor adds 0.2ns into
l k l S th i i li i h d th t i li i CPIclock cycle. Suppose there is no pipelining hazard so that pipelining CPI

is 1, how much speedup will we gain from a pipeline?

Answer:

For un-pipelined processor:
Ave. instruction exec. Time = clock cycle time * average CPI
(AIET) = 1 ns (40% * 4 + 20% *4 + 40% * 5)

4 4

CS420/520 pipeline.42 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

= 4.4 ns

For pipelined processor:
Ave. instruction exec. Time = (1 + 0.2) ns * 1 = 1.2 ns

Speedup = AIET_w/o pipeling / AIET_w/pipeline = 4.4 ns / 1.2 ns = 3.7

Summary

° Disadvantages of the Single Cycle Processor
• Long cycle time
• Cycle time is too long for all instructions except the Load

° Multiple Clock Cycle Processor:y
• Divide the instructions into smaller steps
• Execute each step (instead of the entire instruction) in one cycle

° Pipeline Processor:
• Natural enhancement of the multiple clock cycle processor
• Each functional unit can only be used once per instruction
• If a instruction is going to use a functional unit:

CS420/520 pipeline.43 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

- it must use it at the same stage as all other instructions
• Pipeline Control:

- Each stage’s control signal depends ONLY on the instruction
that is currently in that stage

Where to get more information?

° Appendix A of CA4 (or CA3) text book:
• Chapter A.1 and A.3:

° CO2: Chapter 6.1 – 6.3

CO3: Chapter 6.1 – 6.3
• David Patterson and John Hennessy, “Computer Organization &

Design: The Hardware / Software Interface,” Morgan Kaufman
Publishers; CO2 (2nd edition) and CO3 (3rd edition)

CS420/520 pipeline.44 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

