

- ° Grading the mid term exams:
 - 5 problems, five people grading the exam
 - Each person ONLY grades one problem
 - Pass the exam to the next person as soon as one finishes his part
 - Assume each problem takes 0.5 hour to grade
 - Each individual exam still takes 2.5 hours to grade
 - But with 5 people, all exams can be graded much quicker
- ° The load instruction has 5 stages:
 - Five independent functional units to work on each stage - Each functional unit is used only once
 - The 2nd load can start as soon as the 1st finishes its left stage
 - Each load still takes five cycles to complete
 - The throughput, however, is much higher

CS420/520	pipeline.13

UC. Colorado Springs

Adapted from ©UCB97 & ©UCB03

The Five Stages of Load Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Load Ifateb Rag/Dag Exag Mam Wr				
 [°] Ifetch: Instruction Fetch • Fetch the instruction from the Instruction Memory [°] Reg/Dec: Registers Fetch and Instruction Decode 				
° Exec: Calculate t	° Exec: Calculate the memory address			
° Mem: Read the data from the Data Memory				
° Wr: Write the dat	a back to the register file			
CS420/520 pipeline.14	UC. Colorado Springs	Adapted from ©UCB97 & ©UCB03		

Pipelining the Load Instruction				
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7				
1st lw Ifetch Reg/Dec Exec Mem Wr				
2nd lw Ifetch Reg/Dec Exec Mem Wr				
3rd lw Ifetch Reg/Dec Exec Mem Wr				
 [°] The five independent functional units in the pipeline datapath are: Instruction Memory for the Ifetch stage Register File's Read ports (bus A and busB) for the Reg/Dec stage ALU for the Exec stage Data Memory for the Mem stage Register File's Write port (bus W) for the Wr stage 				
 One instruction enters the pipeline every cycle One instruction comes out of the pipeline (complete) every cycle The "Effective" Cycles per Instruction (CPI) is 1 				
CS420/520 pipeline.15 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03				

Single Cycle, Multiple Cycle, vs. Pipeline							
Cycle 1				— c	ycle 2 —		
Single Cycle Implementation:							
Load				S	Store	N	Waste
Cycle 1 Cycle 2 Cycle 3 Clk Multiple Cycle Implementation: Load	Cycle 4	Cycle 5	Cycle 6	Cycle 7	Cycle 8	Cycle 9	Cycle 10
Ifetch Reg Exec	Mem	Wr	lfetch	Reg	Exec	Mem	lietch
Pipeline Implementation:							
Load Ifetch Reg Exec	Mem	Wr					
Store Ifetch Reg	Exec	Mem	Wr				
R-type Ifetch	Reg	Exec	Mem	Wr]		
CS420/520 pipeline.16	UC. Colo	rado Spring	IS		Ada	pted from ©	UCB97 & ©UCB03

Why Pipelir	ne?					
° Suppose we e	execute 100 instructions					
° Single Cycle M	Machine					
• 45 ns/cyc	• 45 ns/cycle x 1 CPI x 100 inst = 4500 ns					
° Multicycle Ma	chine					
• 10 ns/cyc	• 10 ns/cycle x 4.1 CPI (due to inst mix) x 100 inst = 4100 ns					
 Ideal pipelined machine 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns 						
Compared to the Multi-cycle implementation, pipelining reduces the CPI!						
Compared to the Single-cycle implementation, pipelining reduces the clock cycle time!						
CS420/520 pipeline.17	UC. Colorado Springs	Adapted from ©UCB97 & ©UCB03				

The Four Stages of Store				
Cycle 1 Cycle 2 Cycle 3 Cycle 4				
Store Ifetch Reg/Dec Exec Mem Wr				
 Ifetch: Instruction Fetch Fetch the instruction from the Instruction Memory 				
° Reg/Dec: Registers Fetch and Instruction Decode				
° Exec: Calculate the memory address				
$^{\circ}$ Mem: Write the data into the Data Memory				
CS420/520 pipeline.23 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03				

Pipelining Pe	erformance Example	9			
[°] A un-pipelined (multi-cycle) processor has a 1ns clock cycle, and it uses 4 cycles for <i>ALU</i> operations and <i>Branche</i> s, 5 for <i>Memory</i> operations. The relative frequencies of three operations is 40%, 20%, and 40%.					
^o Due to clock skew and setup, pipelining the processor adds 0.2ns into clock cycle. Suppose there is no pipelining hazard so that pipelining CPI is 1, how much speedup will we gain from a pipeline?					
Answer:	Answer:				
For un-pipelined processor:					
Ave. instruction	exec. Time = clock cycle f	time * average CPI			
(AIET)	(AIET) = 1 ns (40% * 4 + 20% *4 + 40% * 5)				
	= 4.4 ns				
For pipelined processor: Ave. instruction exec. Time = (1 + 0.2) ns * 1 = 1.2 ns					
Speedup = AIET_w/o pipeling / AIET_w/pipeline = 4.4 ns / 1.2 ns = 3.7					
CS420/520 pipeline.42	UC. Colorado Springs	Adapted from ©UCB97 & ©UCB03			

