
CS420/520
Computer Architecture I

Hazards in a Pipeline Processor
(CA4: Appendix A)

Dr. Xiaobo Zhou

Department of Computer Science

CS420/520 pipeline.1 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Review: Pipelining Lessons

° Pipelining doesn’t help
latency of single task, it helps
throughput of entire workload

° Pipeline rate limited by
slowest pipeline stage

6 PM 7 8 9

Time

slowest pipeline stage

° Multiple tasks operating
simultaneously

° Potential speedup = Number
pipe stages

° Unbalanced lengths of pipe
stages reduces speedup

A

B

C

T
a
s
k

O
r

30 40 40 40 40 20

CS420/520 pipeline.2 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

stages reduces speedup

° Time to “fill” pipeline and
time to “drain” it reduces
speedup

C

D

d
e
r

Review: Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Single Cycle Implementation:

Load Store Waste

Cycle 1 Cycle 2

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Ifetch Reg Exec Mem

Load Store

Ifetch

R-type

CS420/520 pipeline.3 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Load Ifetch Reg Exec Mem Wr

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Ifetch Reg Exec Mem WrR-type

Review: A Pipelined Datapath

Clk

Ifetch Reg/Dec Exec Mem Wr

IF
/ID

ID
/E

x

E
x/M

e

M
em

/W

P
C

Data
MemI

A Ra

RegWr ExtOp

E

busA

busB

Imm16

ALUOp

Imm16

PC+4
PC+4

Rs

P
C

+
4

Zero

Branch

1
0

CS420/520 pipeline.4 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

D
 R

egister

x R
egister

em
 R

egister

W
r R

egister

WA
Di

RA Do

IU
n

it

I

RFile

Di

Rb

Rw

MemWr

Exec
Unit

ALUSrc

M
u

x

1

0

MemtoReg

1

0

RegDst

Rt

Rd

Rt

Review: Pipeline Control “Data Stationary Control”

° The Main Control generates the control signals during Reg/Dec

• Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later

• Control signals for Mem (MemWr Branch) are used 2 cycles later

• Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

IF
/ID

ID
/E

x

E
x/M

em

M
em

/W

Reg/Dec Exec Mem

ExtOp

ALUOp

RegDst

ALUSrc

Main
C t l

ExtOp

ALUOp

RegDst

ALUSrc

Wr

CS420/520 pipeline.5 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

D
 R

egister

x R
egister

m
 R

egister

W
r R

egister

Branch

MemWr

MemtoReg

RegWr

Control

MemtoReg

RegWr

MemtoReg

RegWr

MemtoReg

RegWr

Branch

MemWr

Branch

MemWr

Pipeline Summary

° Pipeline Processor:

• Natural enhancement of the multiple clock cycle processor

• Each functional unit can only be used once per instruction

• If a instruction is going to use a functional unit:

it must use it at the same stage as all other instructions- it must use it at the same stage as all other instructions

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ops! We have a problem!

CS420/520 pipeline.6 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

• Pipeline Control:

- Each stage’s control signal depends ONLY on the instruction
that is currently in that stage

Can Pipelining Get Us into Trouble?

° Yes: Pipeline Hazards

• structural hazards: attempt to use the same resource two
different ways at the same time

- E.g., combined washer/dryer would be a structural hazard

• control hazards: attempt to make a decision before condition iscontrol hazards: attempt to make a decision before condition is
evaluated

- branch instructions

• data hazards: attempt to use item before it is ready

- E.g., one sock of pair in dryer and one in washer; can’t fold
until get sock from washer through dryer

- instruction depends on result of prior instruction still in the
pipeline

CS420/520 pipeline.7 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

° Can always resolve hazards by waiting (stall)

• pipeline control must detect the hazard

• take action (or delay action) to resolve hazards

Pipelining the R-type and Load Instruction

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

If t h R /D E WR t

Ops! We have a problem!

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

CS420/520 pipeline.8 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

° We have a problem:

• Two instructions try to write to the register file at the same time!

• Only one write port -> a structural hazard

- This one can be solved to have all instructions to have 5
stages

Single Memory is a Structural Hazard

I

Time (clock cycles)

A
LMem Reg Mem Reg

Mem

I
n
s
t
r.

O
r
d

Load

Instr 1

Instr 2

Instr 3

L
UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UReg Mem Reg

CS420/520 pipeline.9 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

e
r

Instr 3

Instr 4

U

A
L

UMem Reg Mem Reg

A load structural hazard

Option 1: Stall to resolve Memory Structural Hazard

I

Time (clock cycles)

Load

A
L

UMem Reg Mem Reg
How about these two?

Maybe pseudo memoryn
s
t
r.

O
r
d
e

Load

Instr 1

Instr 2

Instr 3(stall)

U

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

bubble

A
L

UMem Reg Mem Reg

CPI = 2

Maybe pseudo-memory

CS420/520 pipeline.10 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

e
r

()

Instr 4

U

A
L

UMem Reg Mem Reg

Load Structural Hazard Performance Impact

° Suppose: 1) memory data reference instructions constitute 40% of the
instruction mix of a program.

2) ideal CPI (no hazards) is 1.

3) the processor with the structural hazard has a clock rate that
is 1.05 times higher than the clock rate of the processor with
out the structural hazard.

° Question: pipeline w/ or w/o the structural hazard, which faster? By how
much?

Answer:

For pipeline w/ the structural hazard:
Ave. instruction exec. Time = average CPI * clock cycle time
(AIET) = (60% * 1 + 40% * 2) * CCT ideal / 1 05

CS420/520 pipeline.11 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

(AIET) (60% 1 + 40% 2) CCT_ideal / 1.05
= 1.333 * CCT_ideal

For pipeline w/o the structural hazard :
Ave. instruction exec. Time = 1 * CCT_ideal

Speedup = AIET_w/ hazard / AIET_w/o hazard = 1.333

Option 2: Duplicate to Resolve Structural Hazard

Time (clock cycles)

• Separate Instruction Cache (Im) & Data Cache (Dm)

I
n
s
t
r.

O
r

Load

Instr 1

Instr 2

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A

CS420/520 pipeline.12 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

d
e
r

Instr 3

Instr 4

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

Why Allowing Structural Hazards?

° A processor w/o structural hazards will always have a lower CPI, if other
factors are equal, then why a designer allows structural hazards?

Answer:

Cost!Cost!

Duplication/separation of IC and DC:
a) costly itself
b) processor requires twice as much total memory bandwidth, if

it needs to support IC and DC accesses in the same cycle.

CS420/520 pipeline.13 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Data Hazard on r1

add r1 ,r2, r3

b 4 1 5sub r4, r1, r5

and r6, r1 ,r7

or r8, r1 ,r9

xor r10 r1 r11

CS420/520 pipeline.14 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

xor r10, r1, r11

Data Hazard on r1:

• Dependencies backwards in time are hazards

Time (clock cycles)

Add 1 2 3
IF ID/RF EX MEM WBA

R R
I
n
s
t
r.

O
r

Add r1,r2, r3

Sub r4, r5, r1

And r6, r1, r7

Or r8 r1 r9

L
UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

CS420/520 pipeline.15 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

d
e
r

Or r8, r1, r9

Xor r10, r1, r11

Ug

A
L

UIm Reg Dm Reg

Even Worse: Unpredictable Behavior!

° Interrupts – events other than branches and jumps that change
the normal flow of instruction execution.

• E.g., asynchronous I/O interrupts

- I/O interrupt is not associated with any instruction

- I/O interrupt does not prevent any instruction from completion/O te upt does ot p e e t a y st uct o o co p et o

– pick your own convenient point to take an interrupt

° If an interrupt occurs between Add and Sub instructions

• The WB stage of the Add will complete

• The value of R1 at that point for the subsequent Sub
instruction will be the Right result of the Add.

- Execution behavior is unpredictable!

CS420/520 pipeline.16 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Execution behavior is unpredictable!

add r1,r2,r3

sub r4, r1, r5

Option1: HW Stalls to Resolve Data Hazard

Time (clock cycles)

dd 1 2 3
IF ID/RF EX MEM WBA

R R

• Dependencies backwards in time are hazards

sub r4, r1, r5

and r6, r1, r7

or r8 r1 r9

I
n
s
t
r.

O
r

add r1,r2,r3

L
UIm Reg Dm Reg

A
L

UIm Reg Dm

Im bubble bubble bubble

A
L

UReg Dm Reg

A

I R

CS420/520 pipeline.17 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

or r8, r1, r9

xor r10, r1, r11

d
e
r

A
L

UIm Reg

Im Reg

But recall use of “Data Stationary Control”

° The Main Control generates the control signals during Reg/Dec

• Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later

• Control signals for Mem (MemWr Branch) are used 2 cycles later

• Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

IF
/ID

ID
/E

x

E
x/M

em

M
em

/W

Reg/Dec Exec Mem

ExtOp

ALUOp

RegDst

ALUSrc

Main
C t l

ExtOp

ALUOp

RegDst

ALUSrc

Wr

CS420/520 pipeline.18 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

D
 R

egister

x R
egister

m
 R

egister

W
r R

egister

Branch

MemWr

MemtoReg

RegWr

Control

MemtoReg

RegWr

MemtoReg

RegWr

MemtoReg

RegWr

Branch

MemWr

Branch

MemWr

Option 1: How HW really stalls pipeline

Time (clock cycles)

dd 1 2 3
IF ID/RF EX MEM WBA

R R

• HW doesn’t change PC => keeps fetching same instruction
& sets control signals to to benign values (0)

I
n
s
t
r.

O
r

add r1,r2,r3

L
UIm Reg Dm Reg

stall

stall

t ll

bubble bubble bubble bubbleIm

bubble bubble bubble bubbleIm

bubble bubble bubble bubbleIm

CS420/520 pipeline.19 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

d
e
r sub r4,r5,r1

and r6,r1,r7

A
L

UIm Reg Dm Reg

stall

A
L

UIm Reg Dm

Option 2: SW inserts independent instructions

Time (clock cycles)

dd 1 2 3
IF ID/RF EX MEM WBA

R R

• Worst case inserts NOP instructions

I
n
s
t
r.

O
r

add r1,r2,r3

L
UIm Reg Dm Reg

nop

nop

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

CS420/520 pipeline.20 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

d
e
r sub r4,r5,r1

and r6,r1,r7

A
L

UIm Reg Dm Reg

nop

A
L

UIm Reg Dm

Ug

Simultaneous Readings and Writing

o The register file is used in two stages
• One for reading in ID/RF
• One for writing in WB

o We need to perform two reads and one write every clock cyclep y y

o To handle reads and a write to the same register
• performing register write in the first half of the clock cycle and
the read in the second half (hardware implementation)

Reg Reg

CS420/520 pipeline.21 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Advantage?

Advantage of Half-stage (Simultaneous) Writing

• Dependencies backwards in time are hazards

Time (clock cycles)

Add 1 2 3
IF ID/RF EX MEM WBA

R R
I
n
s
t
r.

O
r

Add r1,r2, r3

Sub r4, r5, r1

And r6, r1, r7

Or r8 r1 r9

L
UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

CS420/520 pipeline.22 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

d
e
r

Or r8, r1, r9

Xor r10, r1, r11

Ug

A
L

UIm Reg Dm Reg

Option 3 Insight: Data is available!

Time (clock cycles)

dd 1 2 3
IF ID/RF EX MEM WBA

R R

• Pipeline registers already contain needed data

I
n
s
t
r.

O
r

add r1,r2,r3

sub r4,r5,r1

and r6,r1,r7

or r8 r1 r9

L
UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

CS420/520 pipeline.23 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

d
e
r

or r8,r1,r9

xor r10,r1,r11

Ug

A
L

UIm Reg Dm Reg

HW Change I for “Forwarding” (Bypassing):

• Increase multiplexors to add 2 paths from pipeline registers
• Assumes register read during write gets new value (write then read)
(otherwise more results to be forwarded)

ID M

Registers

D
/E

x R
egister

A
L

U

Data
Memory

E
x/M

em
 R

egister

M
u

x

M
em

/W
r R

egister

ForwardB

ForwardA

Rs

Rt

Rt

M
u

x
M

u
x

CS420/520 pipeline.24 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

M
u

x

Forwarding
unit

Rt
Rd

HW Change II for “Forwarding” (Bypassing):

• Increase multiplexors to add 3 paths from pipeline registers
• Assumes register read during write gets new value (write then read)
(otherwise more results to be forwarded)

ID M
u

Registers

D
/E

x R
egister

A
L

U

Data
Memory

E
x/M

em
 R

egister

M
u

x

M
em

/W
r R

egister

M
u

x
u

x

ForwardB

ForwardA

Rs

Rt

Rt

CS420/520 pipeline.25 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

M
u

x

Forwarding
unit

Rt
Rd

Bypassing (cont.)

• Two (or three) extra inputs on each ALU multiplexer and the
addition of paths to the new inputs

• the ALU output at the end of the EX (EXEC/MEM EX)

add $1, $2, $3add $1, $2, $3
add $4, $1, $1

• the ALU output at the end of the MEM stage (MEM/WB EX)

add $1, $2, $3
add $5, $6, $7
lw $4, $1 (100)

CS420/520 pipeline.26 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

• the memory output at the end of the MEM stage (MEM/WB EX)

lw $1, $2 (100)
add $5, $6, $7
add $2, $1, $1

The Delay Load Phenomenon

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem Wr10: Load

Ifetch Reg/Dec Exec Mem WrAdd 1

° Although Load is fetched during Cycle 1:

• The data is NOT written into the Reg File until the end of Cycle 5

Ifetch Reg/Dec Exec Mem WrAdd 1

Ifetch Reg/Dec Exec Mem WrAdd 2

Ifetch Reg/Dec Exec Mem WrSub 3

Ifetch Reg/Dec Exec Mem WrAdd 4

CS420/520 pipeline.27 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

The data is NOT written into the Reg File until the end of Cycle 5

• We cannot read this value from the Reg File until Cycle 6

• 3-instruction delay before the load take effect if no bypassing

° This is referred to as Delay Load:

• Clever design techniques can reduce the delay to ONE instruction

Forwarding reduces Data Hazard to 1 cycle:

Time (clock cycles)

l 1 0(2)
IF ID/RF EX MEM WBA

R R
I
n
s
t
r.

O
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8 r1 r9

L
UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

CS420/520 pipeline.28 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

d
e
r

or r8,r1,r9 Ug

Option2: HW Stalls to Resolve Data Hazard

Time (clock cycles)

l 1 0(2)
IF ID/RF EX MEM WBA

R R

• “pipeline interlock”: checks for hazard & stalls

I
n
s
t
r.

O
r

lw r1, 0(r2)

sub r4,r1,r3

L
UIm Reg Dm Reg

stall bubble bubble bubble bubbleIm

and r6 r1 r7

A
L

UIm Reg Dm Reg

A
LIm Reg Dm Reg

CS420/520 pipeline.29 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

d
e
r

and r6,r1,r7

or r8,r1,r9

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

Option 3: SW Inserts Independent Instructions

Time (clock cycles)

l 1 0(2)
IF ID/RF EX MEM WB

• Worst case inserts NOP instructions
• MIPS I solution: No HW checking

A

R R
I
n
s
t
r.

O
r

lw r1, 0(r2)

sub r4,r1,r3

nop

and r6 r1 r7

A
L

UIm Reg Dm Reg

A
LIm Reg Dm Reg

L
UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

CS420/520 pipeline.30 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

d
e
r

and r6,r1,r7

or r8,r1,r9

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

Try producing fast code for

a = b + c;

d = e – f;

assuming a b c d e and f

Option 4: Software/Compiler Scheduling / ILP

assuming a, b, c, d, e, and f

in memory.

Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW a,Ra

Fast code:

LW Rb,b

LW Rc,c

LW Re,e

CS420/520 pipeline.31 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

,

LW Re,e

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

ADD Ra,Rb,Rc

LW Rf,f

SW a,Ra

SUB Rd,Re,Rf

SW d,Rd

Option 5: Hardware/Dynamic Scheduling / ILP

° Static/compiler pipeline scheduling by the compiler tries to
minimize stalls by separating dependent instructions so that
they will not lead to hazards

° Dynamic hardware scheduling tries to avoid stalls when
dependences, which could generate hazards, are present.

CS420/520 pipeline.32 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Pipeline Data Hazard Detection (Delay Load)

CS420/520 pipeline.33 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

° Comparing the destination and sources of adjacent instructions

Pipeline Interlock Control (for Delay Load)

Opcode of ID/EX Opcode field of IF/ID
(ID/EX.IR 0…5) (IF/ID.IR 0…5) Matching operand fields

Load Reg-Reg ALU ID/EX.IR[rt] ==
IF/ID.IR[rs]

Load Reg-Reg ALU ID/EX.IR[rt] ==

IF/ID.IR[rt]

Load Load, Store, ID/EX.IR[rt] ==
ALU imme, branch IF/ID.IR[rs]

CS420/520 pipeline.34 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

° The logic to detect the need for load interlock during the ID
stage of an instruction requires three/two comparisons

• Why three: is R-type ‘rs’ in the same bits position of the
instruction as that of I-type ‘rs’? Though in MIPS, they are!

From Last Lecture: The Delay Branch Phenomenon
Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr16: R-type

12: Beq
(target is 1000)

Clk

° Although Beq (4 cycle vs. 3 cycle BEQZ/BNEZ) is fetched in Cycle 4:
• Target address is NOT written into the PC until the end of Cycle 7

16: R type

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr24: R-type

20: R-type

Ifetch Reg/Dec Exec Mem Wr1000: Target of Br

CS420/520 pipeline.35 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

g y
• Branch’s target is NOT fetched until Cycle 8
• 3-instruction delay before the branch take effect

° This is referred to as Control Hazard (greater loss than data hazards):
• make a deci. based on result of an instr. whi. others are executing
• Clever design techniques can reduce the delay to ONE instruction

General Control Hazard Solution: Stall

I
n
s
t
r.

Time (clock cycles)

Add

A
L

UMem Reg Mem Reg

A
LMem Reg Mem Reg

° Stall: wait until decision is clear

° I t 3 2 l t l (i if ZERO d t ti h d PC

O
r
d
e
r

Beq

Load

L
UMem Reg Mem Reg

A
L

UReg Mem RegMem
Lost

potential

CS420/520 pipeline.36 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

° Impact: 3 or 2 lost cycles (i.e., if ZERO detection happens and PC
updates in the end of stage 3 in branch instruction) => slow

° Move decision to end of decode

• Move Zero test to ID/RF stage (like BEQZ/BNEZ)

• Adder to calculate new PC in ID/RF stage

• 1 clock cycle penalty for branch vs. 3

Recall: An Abstracted Multiple Cycle Datapath

Add

CS420/520 pipeline.37 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

° Move decision to end of decode

• 1) Move Zero test to ID/RF stage (like BEQZ/BNEZ)

• 2) Adder to calculate new PC in ID/RF stage; 1 cycle penalty vs. 3

Recap: A View of the Pipeline Execution Unit

Clk

Exec

You are here!

Mem
Move to stage 2?
32 bits imm in ID/Ex

ID
/E

x R
egister

E
x/M

em
: L

oad
’s M

em
o

32
busA

busB

A
L

U

Zero

0 32

ALUout

A
d

d
er

<< 2

32
PC+4

Target

32

<< 2SignExt

32-bits imm in ID/Ex

CS420/520 pipeline.38 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

r ory A
d

d
ressALU

Control

ALUctr

32 E
xten

d
er

M
u

x

16

imm16

ALUSrc=1ExtOp=1

3

0

1

32

32

3 ALUOp=Add

Taken Branch vs. Not-Taken Branch

Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr16: successor

12: Beq

Clk

IfetchIfetch Reg/Dec Exec Mem Wr16: successor

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr

20: successor + 1

° Taken branch: If a branch changes the PC to its target address

Ifetch

24: successor + 2
stall

How this stall can be implemented by “control”?

CS420/520 pipeline.39 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

° Not-Taken (untaken) branch: If a branch sequentially falls through

° If the branch above is not taken, the second IF for branch successor
is redundant

• How to take the advantage since the right instruction was indeed
fetched?

Reducing Pipeline Branch Penalties:

° Four simple compile-time schemes

• STATIC: fixed for each branch during the entire execution;
software try to minimize the branch penalty by using knowledge of
the hardware and of branch behavior

° More powerful HW and SW techniques for both static and dynamicMore powerful HW and SW techniques for both static and dynamic
branch prediction

• Instruction Level Parallelism (ILP)

CS420/520 pipeline.40 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Technique 1: freezing/flushing

° Freezing or flushing

• Holding or deleting any instructions after the branch until the
branch decision & destination is known

- Simplicity for both HW and SW

– HW doesn’t change PC => keeps fetching same instructionHW doesn t change PC > keeps fetching same instruction
& sets control signals to benign values (0)

- Early solutions (fixed penalty, CPI 2 for branch instructions)

Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

Ifetch Reg/Dec Exec Mem Wr12: Beq

Clk

CS420/520 pipeline.41 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr16: successor

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr

12: Beq

20: successor + 1

Ifetch

24: successor + 2
stall

Technique 2: not-taken branch

° Single Direction Prediction; not-taken branch

• Treat every branch as not taken

• Allowing HW to continue as if the branch were not executed

- simplifies the instruction fetch

Old i li d I t l i486- Older pipelined processors, e.g., Intel i486

• What if branch is taken?

- For integer benchmarks, branches are taken about 60%

- Turn the fetched instruction into a noop, and restart IF at the
target address

- no “damage” has been done yet to Registers & Memory !

- For integer benchmarks, branches are taken about 60%

CS420/520 pipeline.42 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

g , %

Techniques 2 (Predicted-not-taken) Diagram

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem WrInstruction i + 1

Untaken
branch

Ifetch Reg/Dec Exec Mem WrInstruction i + 2

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr

Instruction i + 3

Instruction i + 4

Ifetch Reg/Dec Exec Mem WrTaken
branch

1 stall

CS420/520 pipeline.43 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Ifetch idle idle idle idleInstruction i + 1

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem WrBranch target

Branch target + 1

Branch target + 2

Technique 3: taken branch

° Single Direction Prediction; taken branch

• Treat every branch as taken -- a higher prediction accuracy (60%)

• Question 1: does it makes sense in our five-stage pipelining?

- Does not know the target address any earlier than we
know branch outcome

• Better prediction accuracy: Backwards Taken/Forwards Not Taken

- Majority of backwards branches are loop branches, which
ll i i b f i i b h lik l

know branch outcome

• Question 2: when does it makes sense?

- In some processors, branch target address is available before
the branch outcome

- But often more HW to calculate the branch address earlier

CS420/520 pipeline.44 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

usually iterate many times before exiting; branches are likely
taken

- Pros: no ISA modification since the sign of target
displacement is encoded in the branch instruction.

- Example: HP PA-RISC2.0 ISA

Technique 4: delayed branch

° Execution cycle

branch instruction

sequential successor 1

branch target if taken or sequential successor 2 if not taken

• A HW component: branch delay slot (1 for MIPS)

- Instruction inside is executed whether branch is taken or not

- Thus, what is the job for the compiler?

–Make the successor instruction valid and useful!

CS420/520 pipeline.45 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Technique 4 Example

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem WrBranch delay
Instruction (i+1)

Untaken
branch

Ifetch Reg/Dec Exec Mem WrInstruction i + 2

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr

Instruction i + 3

Instruction i + 4

Ifetch Reg/Dec Exec Mem WrTaken
branch

Branch delay

CS420/520 pipeline.46 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem WrBranch target

Branch target + 1

Branch target + 2

Branch delay
Instruction (i+1) Ifetch Reg/Dec Exec Mem Wr

Scheduling the Branch Delay Slot (BDS)

(predicted-taken) (predicted-not-taken)

copied

CS420/520 pipeline.47 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Make the successor instruction valid and useful! Worst case:
It must be OK to execute BDS when the branch goes in the unexpected direction.

R7: an unused
Temporary R

Summary of Pipelining Hazards

° Speed Up and Pipeline Depth; if ideal CPI is 1, then:

° What makes it easy

Speedup = Pipeline depth
1Pipeline stall cycles per instruction

Clock cycle unpipelined
Clock cycle pipelined

• all instructions are the same length
• just a few instruction formats
• memory operands appear only in loads and stores

° What makes it hard: hazards limit performance on computers:

• structural: need more HW resources

• data: need forwarding (& simultaneous write), compiler scheduling

• control: early evaluation & PC, delayed branch, prediction

CS420/520 pipeline.48 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

control: early evaluation & PC, delayed branch, prediction

° Compilers key to reducing cost of data and control hazards

° More reading:

• CA 5: Appendix C.2-C.4

• CO 4: Chapter 4.5-4.8

