CS420/520 pipeline.1

CS420/520
Computer Architecture |

Hazards in a Pipeline Processor
(CA4: Appendix A)

Dr. Xiaobo Zhou
Department of Computer Science

UC. Colorado Springs

Adapted from ©UCB97 & ©UCBO03

~un o -

—1('DQ_—10

CS420/520 pipeline.2

Review: Pipelining Lessons

6 PM

B

©
&)

7 8 9

Time
|

S
7—27

o

gl

S ali

Tt

7—27

UC. Colorado Springs

30| 40 | 40 | 40 40 |20|

7’

o

o

Pipelining doesn’t help
of single task, it helps
of entire workload

Pipeline rate limited by
pipeline stage

tasks operating
simultaneously

Potential speedup =

Unbalanced lengths of pipe
stages reduces speedup

Time to “fill” pipeline and
timeto * " it reduces
speedup

Adapted from ©UCB97 & ©UCB03

Review: Single Cycle, Multiple Cycle, vs. Pipeline

] Cycle 1 Cycle 2
Clk I | |
Singde Cycle Implementation:

Load Store i Waste

I [I I S S

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

I [I I S T

Cycle 6 Cycle 7 Cycle 8 Cycle 9 i(:ycle 10

Clk S
Multiple Cycle Implementation:
Load Store R-type
Ifetchl Reg | Exec | Mem | Wr Ifetchl Reg | Exec | Mem Ifetch|
Pipeline Implementation:
Load| Ifetchl Reg | Exec | Mem | Wr |

CS420/520 pipeline.3

Store| Ifetchl Reg | Exec | Mem | Wr |

R-typel Ifetchl Reg I Exec

IMemIer

UC. Colorado Springs

Adapted from ©UCB97 & ©UCB03

Review: A Pipelined Datapath

S R S

clk | | |
i H Lt I H Lt ct
| Metch Reg/Dec v Exec v Mem '" wr
1 1 k/://*/JI/
1 1 1 1
' | Regwr | ExtOp ALUOp ! Branch !
1 t t t |
1 ,—'— 1 1 1 1
1
1 |o 1 1 1 1
Q)
2 — | O g O — _>_Q_J O
o
o £ Imm16 mmagl | -
—|Ir —
— [—|a T ™) ra 1B busA _'é Zerd ,\Ejlaetr?1 5
_ 5 —| M busB 3 =
c 5| =770 % —|3 RA D S]
2l &R |rrFie| |2 o[—{wa o |z
z z S, Di S| g
@ | |rt LRW.DI o @ > =
| B ~ 0 2 |
— Rd u - j
RegDst ALUSrc MemWr MemtoReg !

CS420/520 pipeline.4

UC. Colorado Springs

Adapted from ©UCB97 & ©UCB03

Review: Pipeline Control

° The Main Control generates the control signals during Reg/Dec
« Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
» Control signals for Mem (MemWr Branch) are used 2 cycles later
« Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

: : Reg/Dec : Exec : Mem : Wr
1: 1: 1 1
1 | | |
Q. ExtOp ExtOp Q. Q.
ALUSrc ALUSrc
m
= ALUOp ALUOp % £
= Main 3
= RegDst RegDst @ >
o __,| Control g g 3 §
é? MemWr MemWr 8| Memwr o
@ Branch Branch 5| Branch S,
2 g 2
MemtoReg MemtoReg MemtoReg = | MemtoReg
RegWr RegWr RegWr RegWr
CS420/520 pipeline.5 UC. Colorado Springs Adapted from ©@UCB97 & ©UCB03

Pipeline Summary

° Pipeline Processor:
« Natural enhancement of the multiple clock cycle processor
« Each functional unit can only be used once per instruction
« If ainstruction is going to use a functional unit:
- it mustuseit at the same stage as all other instructions

Ops! We have a problem!

A

Loadl Ifetch |Reg/Dec| Exec | Mem Wr

R-type| Ifetch |Reg/Dec| Exec Wr
N

e Pipeline Control:

- Each stage’s control signal depends ONLY on the instruction
that is currently in that stage

CS420/520 pipeline.6 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Can Pipelining Get Us into Trouble?

° Yes: Pipeline Hazards

e structural hazards: attempt to use the same resource two
different ways at the same time

- E.g.,combined washer/dryer would be a structural hazard

« control hazards: attempt to make a decision before condition is
evaluated

- branch instructions
» data hazards: attempt to use item before it is ready

- E.g.,one sock of pair in dryer and one in washer; can’t fold
until get sock from washer through dryer

- instruction depends on result of prior instruction still in the
pipeline
° Can always resolve hazards by waiting (stall)
 pipeline control must detect the hazard
« take action (or delay action) to resolve hazards

CS420/520 pipeline.7 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Pipelining the R-type and Load Instruction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 ;CycIeS éCycIe 6 ;Cycle 7 éCycIe 8 ;Cycle9

cook LML LT 1L T LT

R-type| Ifetch JReg/Dec] Exec | wr | Ops! We have ajproblem!

R-typel Ifetch |Reg/Dec| Exec | Wr |

Load| Ifetch |Reg/Dec| Exec | Mem | wr

R-typel Ifetch |Reg/Dec| Exec Wr

ps———

R-type| Ifetch |Reg/Dec| Exec | Wr

° We have a problem:
« Two instructions try to write to the register file at the same time!
* Only one write port -> a structural hazard

- This one can be solved to have all instructions to have 5
stages

CS420/520 pipeline.8 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Single Memory is a Structural Hazard

Time (clock cycles)

[Mem|L| Reg |7 Y '_ Reg
n |Load - Ii
S
L[| Reg | Mem || Reg
t |Instr 1 MemRe . ?'
. oA =)
Mem| Reg | Y Mem || Reg
o |Instr 2 ’ IE'
;
d -I Reg| 3 Mem || Reg
. |Instr3 'ilﬂ I
r o L
MemLL| R ; {MemL{Re

Instr 4 * _i{ e

CS420/520 pipeline.9 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Option 1: Stall to resolve Memory Structural Hazard

Time (clock cycles)

How about these two?

rl1 Load Memp (| Red -Y.;F Re // Maybe pseiido-memory
s y

L] D L
rt InStr 1 Mem(L| Reg _([Mem Re?/

Mem | Reg| " ¥ em| | Reg CCP1 =

o |Instr 2 § IA'
r I D
4 |Instr S(Sta”) @ Mem[L| Reg [?7 {Mem|{Reg
e — ?
r —

Instr 4 Mem|L| Reg IE' I:Mem . Reg

CS420/520 pipeline.10 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Load Structural Hazard Performance Impact

° Suppose: 1) memory data reference instructions constitute 40% of the
instruction mix of a program.

2) ideal CPI (no hazards) is 1.

3) the processor with the structural hazard has a clock rate that
is 1.05 times higher than the clock rate of the processor with
out the structural hazard.

° Question: pipeline w/ or w/o the structural hazard, which faster? By how
much?
Answer:

For pipeline w/ the structural hazard:

Ave. instruction exec. Time = average CPI * clock cycle time

(AIET) =(60% * 1 + 40% * 2) * CCT _ideal / 1.05
=1.333 * CCT _ideal

For pipeline w/o the structural hazard :

Ave. instruction exec. Time =1 * CCT_ideal

Speedup = AIET_w/ hazard /AIET_w/o hazard = 1.333

CS420/520 pipeline.11 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Option 2: Duplicate to Resolve Structural Hazard

* Separate Instruction Cache (Im) & Data Cache (Dm)

Time (clock cycles)

I L[Reg |7 ¥ R
n |Load " eg— ' *
s
L] Y L
rt |nStr 1 Im Reg_ [Dm Reg
o linstr 2 Im | Reg Dm | |Reg
; “
d Instr 3 Im [Reg : Dm ||Reg
e l‘ L’
' Im] Reg|? ¥ -{Dm | {Reg
Instr 4 I" (

CS420/520 pipeline.12 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Why Allowing Structural Hazards?

° A processor w/o structural hazards will always have a lower CPI, if other
factors are equal, then why a designer allows structural hazards?

Answer:
Cost!

Duplication/separation of IC and DC:

a) costly itself
b) processor requires twice as much total memory bandwidth, if

it needs to support IC and DC accesses in the same cycle.

CS420/520 pipeline.13 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Data Hazard on rl

add rl ,r2,r3
sub r4, rl, r5
and r6, rl r7
or r8,rl,r9

xorr10,rl, rl1l

CS420/520 pipeline.14 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Data Hazard on r1;

* Dependencies backwards in time are hazards

Time (clock cycles)
IF_| ID/RF EX | MEM WB
|| Addr1,r2,r3 [im HlRreo] %y oo
n 7] '
°| Subra,rs, rl m EEI;
r.
Andr6,r1,r7 Im 1
0
4| Or 81l r9 : Reg
¢ R
r| Xor r10,rl,rll s
—_
CS420/520 pipeline.15 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Even Worse: Unpredictable Behavior!

° Interrupts — events other than branches and jumps that change
the normal flow of instruction execution.

« E.g., asynchronous I/O interrupts
- l/Ointerrupt is not associated with any instruction
- l/Ointerrupt does not prevent any instruction from completion
— pick your own convenient point to take an interrupt

° If an interrupt occurs between Add and Sub instructions
« The WB stage of the Add will complete

* The value of R1 at that point for the subsequent Sub
instruction will be the Right result of the Add.

- Execution behavior is unpredictable!
add r1,r2,r3
sub r4,rl, r5

CS420/520 pipeline.16 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Optionl1: HW Stalls to Resolve Data Hazard

* Dependencies backwards in time are hazards

Time (clock cycles)
IF ID/RF k MEM | WB
, |add r1,r2,r3 | m 'EReg_ Dm];ﬁ'
S |subr4,rl,r5 Im -@@@?egj
t | E—
r.
and r6, r1, r7
(@]
g lor r8,r1,19 m
e
r xor rl0, r1, rll

CS420/520 pipeline.17

uc.

Colorado Springs

im] Reg %DL(

Adapted from ©UCB97 & ©UCBO03

But recall use of “Data Stationary Control”

° The Main Control generates the control signals during Reg/Dec
« Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
e Control signals for Mem (MemWr Branch) are used 2 cycles later
« Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

: : Reg/Dec : Exec : Mem : Wr
1: 1: 1 1
1 | | |
O ExtOp ExtOp vl O
ALUSrc ALUSrc
m
= ALUOp ALUOp % =
= Main 3
= RegDst RegDst @
g Control d g 3 %
@ MemWwr MemWwr & Memwr)
<, (=} @©
[z} Branch Branch @ | Branch =3
g g 2
MemtoReqg MemtoReqg MemtoReg = | MemtoReg
RegWr RegqWr RegWr RegWr

CS420/520 pipeline.18

UC. Colorado Springs

Adapted from ©UCB97 & ©UCB03

Option 1: How HW really stalls pipeline

* HW doesn’t change PC => keeps fetching same instruction
& sets control signals to to benign values (0)

Time (clock cycles)
IF_ ID/RF N\EX MEM WB
 |add 11,r2,r3 [m {7 ? 1om [l
> | stall Im -@j
r.
stall il @
(@] ;
d | stall
e & 1
r sub r4,r5, Im L Reg[= |{Dm ?_Reg
=
and r6,rl1,r7 Im [Reg|” ?, [om
CS420/520 pipeline.19 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Option 2: SW inserts independent instructions

» Worst case inserts NOP instructions

Time (clock cycles)

IF ID/R_F X | MEMi WB
! add r1,r2,r3 | 'm Reg_ f1om —Eo
E nop sl Reg:_ﬂ* Reg
_ | nop i '[Reg— g
d | nop il :DL?_ e
° |sub r4,r5, m | Reg:_DL,?_Reg
and r6,r1,r7 Im J'Reg% Dm

CS420/520 pipeline.20 UC. Colorado Springs Adapted from ©UCB97 & ©UCBO03

Simultaneous Readings and Writing

0 The register file is used in two stages
* One for reading in ID/RF
* One for writing in WB

0 We need to perform two reads and one write every clock cycle

0 To handle reads and a write to the same register
« performing register write in the first half of the clock cycle and

the read in the second half (hardware implementation)

e] E

Advantage?

UC. Colorado Springs Adapted from ©UCB97 & ©UCBO03

CS420/520 pipeline.21

Advantage of Half-stage (Simultaneous) Writing

» Dependencies backwards in time are hazards

Time (clock cycles)

IF ID/RF
| Addrl,r2,r3 | m L Reg [
n
°| Subr4,r5,rl m
"I Andr6,r1,r7
(e}
gl Or r8,r1,r9
e
r| Xor r10,r1, ril Reg

CS420/520 pipeline.22 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Option 3 Insight: Data is available!

* Pipeline registers already contain needed data

Time (clock cycles)
IF | IDIRF wB
. |add rl,r2,r3 | m [fRe| 1w
n
: sub r4,r5,r1 Im Dn) 1 Reg
r. I Dm | {Reg
and r6,rl,r7 |
0]
r Im H|R ; Dm LR
4 lor r8,r1,r9 " II["
© | [[Reg | D Re
m H e 3 {Dm -
r |xorr10,r1,r11 g"l P ’
CS420/520 pipeline.23 UC. Colorado Springs Adapted from ©UCB97 & ©UCBO03
HW Change | for “Forwarding” (Bypassing):
* Increase multiplexors to add 2 paths from pipeline registers
» Assumes register read during write gets new value (write then read)
(otherwise more results to be forwarded)
1 T N
—> f X m Z
Registers Py ForwardA E % 3
— _.Cz" 3 Data (< -
3) | (;.‘E Memory P g —
z Q,
R_S ForyardB = — 7 5
Rt
Rt \l
Rd = — |
L X
\;
Forwarding

unit
-

CS420/520 pipeline.24 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

HW Change Il for “Forwarding” (Bypassing):

* Increase multiplexors to add 3 paths from pipeline registers
» Assumes register read during write gets new value (write then read)
(otherwise more results to be forwarded)

_ 2 N N
| Registers| |X > |T <
By ForwardA) g
) =1 c @ S
g 3 Data — § z
= | z Memory - <
2 S
§ z
Rs ForwardB - =
Rt
L —
Rt = |
Rd = — L |
— X
L
Forwarding
unit
-
CS420/520 pipeline.25 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Bypassing (cont.)

* Two (or three) extra inputs on each ALU multiplexer and the
addition of paths to the new inputs
¢ the ALU output at the end of the EX (EXEC/MEM = EX)

add $1, $2, $3
add $4, $1, $1

* the ALU output at the end of the MEM stage (MEM/WB - EX)

add $1, $2, $3
add $5, $6, $7
Iw $4, $1 (100)

* the memory output at the end of the MEM stage (MEM/WB - EX)

Iw $1, $2 (100)
add $5, $6, $7
add $2, $1, $1

CS420/520 pipeline.26 UC. Colorado Springs Adapted from ©UCB97 & ©UCBO03

The Delay Load Phenomenon

Cycle l Cycle 2 Cycle 3 Cycle 4 ;Cycle 5 ECycIe 6 ;Cycle 7 §Cycle 8

Clock L T 1L_T1__]

10: Load| Ifetch |Reg/Dec| Exec | MemJJLr/
T

Add 1| tfetch |RegiDec] Efec | Mem [H wr |

Add 2 | Ifetch | Reg/Dec| .‘Exec I Mem | wr |

sub3 | Ifetch |Reg/De ."-.Exec | mem | wr |

Add4| Ifetch Reg/Decl Exec | Meml Wr |
v

° Although Load is fetched during Cycle 1:
* The data is NOT written into the Reg File until the end of Cycle 5
* We cannot read this value from the Reg File until Cycle 6
» 3-instruction delay before the load take effect if no bypassing

° This is referred to as Delay Load:
» Clever design techniques can reduce the delay to ONE instruction

CS420/520 pipeline.27 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Forwarding reduces Data Hazard to 1 cycle:

Time (clock cycles)

IF_ . ID/IRF NEX: MEM

lw rl, 0(r2) | 'm HReo| ?, Dm |
(r2) 1!

sub r4,rl,r6 m [El °

and r6,r1,r7 Im - Reg)

=
w

-

2
1
Py
>
Q

S5~ W0 5 —

| Reg

o

- o a-=0
o
-~
-~
o
=
(e}
L |
py)
&
<o
E

Dm [Reg

CS420/520 pipeline.28 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Option2: HW Stalls to Resolve Data Hazard

* “pipeline interlock™: checks for hazard & stalls

Time (clock cycles)

IF ID/RE: X

C [lwrd, 0(r2) 'm-fReg_
n
f stall Im =
r.

subr4,r1,r3 Im
(@)
é and r6,r1,r7
e

"lor r8,r1,r9

CS420/520 pipeline.29

UC. Colorado Springs

MEM W8

N g
N >
1 (e

Im JEJ_

Dm [1Reg

Dm a Reg

|Reg[¥ |ibm @ Reg
“ =

Adapted from ©UCB97 & ©UCBO03

Option 3: SW Inserts Independent Instructions

* Worst case inserts NOP instructions
* MIPS 1 solution: No HW checking

Time (clock cycles)

IF ID/IRF NEX
lw rl, 0(r2) | m HRe :
S no Im [Reg|
N]
subr4,r1,r3 Im
(@]
4 land re,r1,r7
e
"lor r8,r1,r9

CS420/520 pipeline.30

UC. Colorado Springs

MEM: WB

Dm L. |Reg

Im JE(Q_Dm a Reg

|Reg(= |-ibm a Reg
—‘ |

Adapted from ©UCB97 & ©UCB03

Option 4: Software/Compiler Scheduling / ILP

Try producing fast code for

a=b+c;
d=e-f

assuming a, b, c,d, e, and f

in memory.

Slow code:
Lw Rb,b Fast code:
LW Rc.c LW Rb,b
ADD Ra,Rb,Rc LW Ree
S ara e
Lw Re,e LW R f,,f ’
Lw Rf,f Sw aRa
SUB Rd,Re,Rf SUB Rd,ReRf
sSwW d,Rd SW d,Rd

CS420/520 pipeline.31 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Option 5: Hardware/Dynamic Scheduling / ILP

° Static/compiler pipeline scheduling by the compiler tries to
minimize stalls by separating dependent instructions so that
they will not lead to hazards

° Dynamic hardware scheduling tries to avoid stalls when
dependences, which could generate hazards, are present.

CS420/520 pipeline.32

UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Pipeline Data Hazard Detection (Delay Load)

Action

No hazard possible because no dependence
exists on R1 in the immediately following three
instructions.

Comparators detect the use of R1 in the DADD

-and stall the DADD (and DSUB and OR) before the

DADD begins EX.

Comparators detect use of R1 in DSUB and
forward result of load to ALU in time for DSUB
to begin EX.]

Example code
Situation sequence
Nodependence LD R1,45(R2)
DADD R5,R6,R7
DSUB R8,R6,R7
OR R9,R6,R7
Dependence LD R1,45(R2)
requiring stall DADD R5,R1,R7
. DSUB R8,R6,R7
OR R9,R6,R7
Dependence LD R1,45(R2)
overcome by DADD R5,R6,R7
forwarding DSUB R8,R1,R7
OR R9,R6,R7
Dependence with LD R1,45(R2)
accesses in order DADD R5,R6,R7
DSUB R8,R6,R7
OR R9,RL,R7

No action required because the read of R1 by OR |
occurs in the second half of the ID phase, while-
the write of the loaded data occurred in the first
half. '

° Comparing the destination and sources of adjacent instructions

CS420/520 pipeline.33

UC. Colorado Springs

Adapted from ©UCB97 & ©UCBO03

Pipeline Interlock Control (for Delay Load)

Opcode of ID/IEX Opcode field of IF/ID

(ID/EX.IR0...5) (IF/ID.IR0...5) Matching operand fields

Load Reg-Reg ALU ID/EX.IR[rt] ==
IF/ID.IR[rs]

Load Reg-Reg ALU ID/EX.IR[rt] ==
IF/ID.IR[rt]

Load Load, Store, ID/EX.IR[rt] ==

ALU imme, branch IF/ID.IR[rs]

° The logic to detect the need for load interlock during the ID
stage of an instruction requires three/two comparisons

* Why three: is R-type ‘rs’ in the same bits position of the
instruction as that of I-type ‘rs’? Though in MIPS, they are!

CS420/520 pipeline.34

UC. Colorado Springs

Adapted from ©UCB97 & ©UCB03

From Last Lecture: The Delay Branch Phenomenon

Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10§ Cycle 11;

G LT L Ay oy

12: Beql Ifetch |Reg/DeQ_| Exec | Mem. || Wr |
(target is 1000) 3 2

16: R_typp| Ifetch I_Reg/Decl Exec'l Mem | Wr |

20: R-typel"lfetch |Reg/Dec| Exec | Meml Wr |

24: R-type| Ifetch eg/Decl Exec I Mem | Wr |

1000: Target of Br Utlfetch |Reg/DecI Exec | Mem I Wr |
V

° Although Beq (4 cycle vs. 3 cycle BEQZ/BNEZ) is fetched in Cycle 4:
e Target address is NOT written into the PC until the end of Cycle 7
« Branch’s target is NOT fetched until Cycle 8
« 3-instruction delay before the branch take effect

° This is referred to as Control Hazard (greater loss than data hazards):
* make a deci. based on result of an instr. whi. others are executing
« Clever design techniques can reduce the delay to ONE instruction

CS420/520 pipeline.35 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

General Control Hazard Solution: Stall

I Time (clock cycles)

n :

s Mem}l| Reg d_ : 1Reg

' I Reg [iIMem i1 Reg

Be Mem I ?, :

o |- L] j

r Lost R * M R
' | Load Ote@g R IE o
e H :

r

° Stall: wait until decision is clear

° Impact: 3 or 2 lost cycles (i.e., if ZERO detection happens and PC
updates in the end of stage 3 in branch instruction) => slow

° Move decision to end of decode
« Move Zero test to ID/RF stage (like BEQZ/BNEZ)
« Adder to calculate new PC in ID/RF stage
* 1 clock cycle penalty for branch vs. 3

CS420/520 pipeline.36 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Recall: An Abstracted Multiple Cycle Datapath

Instruction decode/ Execute/ Me Write
i o address mory 1
Instruction fetch calculation access back
M :
u
x
NPC
4
I-H
Instruction
-
memory
Data LMD — a
memory

° Move decision to énd of decode _
« 1) Move Zero test to ID/RF stage (like BEQZ/BNEZ)
e 2)Adder to calculate new PC in ID/RF stage; 1 cycle penalty vs. 3

& 2003 Elsevier Science (USA). All rights reserved.
UC. Colorado Springs

CS420/520 pipeline.37

Adapted from ©UCB97 & ©UCBO03

Recap: A View of the Pipeline Execution Unit

You are here!

Move to stage 2?

Mem

32-bits imm in ID/EX

1915169 x3/0|/\|o— ——— e—

CS420/520 pipeline.38

UC. Colorado Springs

| SSa4ppPY A10WB3IA S, peo (WaA/XT

1
UsA ‘|\
> Zero
32 \>
B B HE Ag;uout >
32 s A
- rn Z /
|Tm16 § _ 3] ALUctr
> 'L
16 2 32
: Bt
ExtOp=1 ALUsrc=1 3°| ALUOp=Add

Adapted from ©UCB97 & ©UCB03

Taken Branch vs. Not-Taken Branch

Cycle 4§Cycle5 Cycle 6§Cycle7 SCycIeS éCyCIeQ SCycIe lO Cycle 11
ek LT LTI

12: Beql Ifetch IReg/DecI Exec I Mem I Wr | E

16: successor I Ifetch | Ifetch IReg/DecI Exec I Mem I Wr

20: successor + 1

I Ifetch IReg/DecI Exec I Mem I Wr

| Ifetch IReg/DecI Exec I Mem I Wr

24: successor + 2

How this stall can be implemented by “control”?
Taken branch: If a branch changes the PC to its target address
Not-Taken (untaken) branch: If a branch sequentially falls through

If the branch above is not taken, the second IF for branch successor
is redundant

How to take the advantage since the right instruction was indeed
fetched?

CS420/520 pipeline.39 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Reducing Pipeline Branch Penalties:

° Four simple compile-time schemes

« STATIC: fixed for each branch during the entire execution;

software try to minimize the branch penalty by using knowledge of
the hardware and of branch behavior

° More powerful HW and SW techniques for both static and dynamic
branch prediction

* Instruction Level Parallelism (ILP)

CS420/520 pipeline.40 UC. Colorado Springs

Adapted from ©UCB97 & ©UCB03

Technique 1: freezing/flushing

° Freezing or flushing

* Holding or deleting any instructions after the branch until the
branch decision & destination is known

- Simplicity for both HW and SW

— HW doesn’t change PC => keeps fetching same instruction

& sets control signals to benign values (0)
Early solutions (fixed penalty, CPI 2 for branch instructions)

Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11
o777 N N N N I O I N I S

12: Beql Ifetch |Reg/Dec| Exec | Mem | Wr |

16: successor | Ifetch | Ifetch |Reg/Dec| Exec | Mem | Wr

20: successor + 1

| Ifetch |Reg/Dec| Exec | Mem | Wr

24: successor + 2

| Ifetch |Reg/Dec| Exec | Mem | Wr

CS420/520 pipeline.41 UC. Colorado Springs

Adapted from ©UCB97 & ©UCB03

Technique 2: not-taken branch

° Single Direction Prediction; not-taken branch
» Treat every branch as not taken
« Allowing HW to continue as if the branch were not executed
- simplifies the instruction fetch
- Older pipelined processors, e.g., Intel i486

e What if branch is taken?

For integer benchmarks, branches are taken about 60%

Turn the fetched instruction into a noop, and restart IF at the
target address

- no “damage” has been done yet to Registers & Memory !
For integer benchmarks, branches are taken about 60%

CS420/520 pipeline.42 UC. Colorado Springs

Adapted from ©UCB97 & ©UCB03

Techniques 2 (Predicted-not-taken) Diagram

H{‘;ﬁ(‘;ﬁﬁnl Ifetch IReg/DecI Exec I Meml Wr |

Instruction i +1 | ifetch JRegiDec] Exec | Mem | wr |

Instruction i + 2 | Ifetch IReg/DecI Exec I Mem I Wr |

Instructioni +3 | Ifetch IReg/DecI Exec I Mem I Wr I

Instruction i + 4 [1fetch |reg/Dec] Exec | mem | wr

g?éfﬁ@h | Ifetch |Reg/Dec| Exec | Mem | Wr |

Instruction i +1 | ifetch Jidle | idle | idle | idle |

Branch target | Ifetch IReg/DecI Exec I Mem I Wr I

Branch target + 1 | Ifetch |Reg/Dec| Exec | Mem | Wr |

Branch target + 2 [ifetch IReg/Dec] Exec | ™Mem | wr

CS420/520 pipeline.43 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Technique 3: taken branch

° Single Direction Prediction; taken branch
« Treat every branch as taken -- a higher prediction accuracy (60%)
e Question 1: does it makes sense in our five-stage pipelining?

- Does not know the target address any earlier than we
know branch outcome

¢ Question 2: when does it makes sense?

- In some processors, branch target address is available before
the branch outcome

- But often more HW to calculate the branch address earlier

» Better prediction accuracy: Backwards Taken/Forwards Not Taken

- Majority of backwards branches are loop branches, which
usually iterate many times before exiting; branches are likely
taken

- Pros: no ISA modification since the sign of target
displacement is encoded in the branch instruction.

- Example: HP PA-RISC2.0 ISA

CS420/520 pipeline.44 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Technique 4: delayed branch

° Execution cycle
branch instruction
sequential successor 1

branch target if taken or sequential successor 2 if not taken

« AHW component: branch delay slot (1 for MIPS)
- Instruction inside is executed whether branch is taken or not
- Thus, what is the job for the compiler?

—Make the successor instruction valid and useful!

CS420/520 pipeline.45 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Technique 4 Example

g}gﬁé‘?q Ifetch |Reg/Dec| Exec | Mem | Wr |

Fnrﬁ?ﬁgt?grllaiﬂ) [Lifetch |Reg/Dec] Exec | Mem | wr |

Instruction i + 2 | Ifetch |Reg/Dec| Exec | Mem | Wr |
Instruction i +3 | Ifetch |Reg/Dec| Exec | Mem | Wr |

Instruction i + 4 [ifetch |Reg/Dec] Exec | Mem | wr

E?l;ﬁ@h | Ifetch IReg/DecI Exec I Mem I Wr |

Fnrﬁ?ﬁgtﬂjerlﬁiﬂ) | Ifetch IReg/DecI Exec I Mem I Wr I

Branch target | Ifetch |Reg/Dec| Exec | Mem | Wr |

Branch target + 1 | Ifetch |Reg/Dec| Exec | Mem | Wr |

Branch target + 2 [ifetch |Reg/Dec] Exec | Mem | wr

CS420/520 pipeline.46 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

Scheduling the Branch Delay Slot (BDS)

(a) From before (b) From target (c) From fall-through
DADD R1, R2, R3 DADD Ri, R2, R3
DSUB R4, RS, A6
it R2 = 0 then if A1 =0 then
it R1 =0 then OR R7, R, A9
— osue R, s, R
(predictegl-taken) (predicted{not-taken)
becomes becomes becomes
copied
DSUE R4, A5, ARG DADD R1, R2, R3
if R2 = 0 then if A1 =0then
. R7: an unused
if R1 =0 then Temporary R
—— DSUB R4, RS, RE DSUB R4, RS, R6
.

Make the successor instruction valid and useful! Worst case:

It must be OK to execute BDS when the branch goes in the unexpected direction.
@ 2003 Elsevier Science (USA). All riahts reserved.
CS420/520 pipeline.47 UC. Colorado Springs Adapted from ©UCB97 & ©UCBO03

Summary of Pipelining Hazards

° Speed Up and Pipeline Depth; if ideal CPlis 1, then:

Speedup = Pipeline depth - Clock cycle unpipelined
1+Pipeline stall cycles per instruction ~ Clock cycle pipelined

° What makes it easy
« all instructions are the same length
¢ just a few instruction formats
< memory operands appear only in loads and stores

° What makes it hard: hazards limit performance on computers:
 structural: need more HW resources
« data: need forwarding (& simultaneous write), compiler scheduling
« control: early evaluation & PC, delayed branch, prediction

° Compilers key to reducing cost of data and control hazards

° More reading:
¢ CA 5: Appendix C.2-C.4
¢ CO 4: Chapter 4.5-4.8

CS420/520 pipeline.48 UC. Colorado Springs Adapted from ©UCB97 & ©UCB03

