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Review: Pipelining Lessons

° Pipelining doesn’t help 
latency of single task, it helps 
throughput of entire workload

° Pipeline rate limited by 
slowest pipeline stage
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slowest pipeline stage

° Multiple tasks operating 
simultaneously

° Potential speedup = Number 
pipe stages

° Unbalanced lengths of pipe 
stages reduces speedup
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stages reduces speedup

° Time to “fill” pipeline and 
time to “drain” it reduces 
speedup
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Review: Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Single Cycle Implementation:

Load Store Waste

Cycle 1 Cycle 2

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Ifetch Reg Exec Mem

Load Store

Ifetch

R-type
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Load Ifetch Reg Exec Mem Wr

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Ifetch Reg Exec Mem WrR-type

Review: A Pipelined Datapath
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Ifetch Reg/Dec Exec Mem Wr
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Review: Pipeline Control “Data Stationary Control”

° The Main Control generates the control signals during Reg/Dec

• Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later

• Control signals for Mem (MemWr Branch) are used 2 cycles later

• Control signals for Wr (MemtoReg MemWr) are used 3 cycles later
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Pipeline Summary

° Pipeline Processor:

• Natural enhancement of the multiple clock cycle processor

• Each functional unit can only be used once per instruction

• If a instruction is going to use a functional unit:

it must use it at the same stage as all other instructions- it must use it at  the same stage as all other instructions

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ops!  We have a problem!
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• Pipeline Control:

- Each stage’s control signal depends ONLY on the instruction 
that is currently in that stage



Can Pipelining Get Us into Trouble?

° Yes: Pipeline Hazards

• structural hazards: attempt to use the same resource two 
different ways at the same time

- E.g., combined washer/dryer would be a structural hazard 

• control hazards: attempt to make a decision before condition iscontrol hazards: attempt to make a decision before condition is 
evaluated

- branch instructions

• data hazards: attempt to use item before it is ready

- E.g., one sock of pair in dryer and one in washer; can’t fold 
until get sock from washer through dryer

- instruction depends on result of prior instruction still in the 
pipeline
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° Can always resolve hazards by waiting (stall)

• pipeline control must detect the hazard

• take action (or delay action) to resolve hazards

Pipelining the R-type and Load Instruction

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

If t h R /D E WR t

Ops!  We have a problem!

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type
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° We have a problem:

• Two instructions try to write to the register file at the same time!

• Only one write port -> a structural hazard

- This one can be solved to have all instructions to have 5 
stages 



Single Memory is a Structural Hazard
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A load structural hazard

Option 1: Stall to resolve Memory Structural Hazard
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Load Structural Hazard Performance Impact

° Suppose: 1) memory data reference instructions constitute 40% of the 
instruction mix of a program. 

2) ideal CPI (no hazards) is 1.

3) the processor with the structural hazard has a clock rate that 
is 1.05 times higher than the clock rate of the processor with 
out the structural hazard.

° Question: pipeline w/ or w/o the structural hazard, which faster? By how 
much?

Answer: 

For pipeline w/ the structural hazard:
Ave. instruction exec. Time = average CPI * clock cycle time 
(AIET) = (60% * 1 + 40% * 2) * CCT ideal / 1 05
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(AIET)  (60%  1 + 40%  2)  CCT_ideal / 1.05
= 1.333 * CCT_ideal

For pipeline w/o the structural hazard :
Ave. instruction exec. Time = 1 * CCT_ideal

Speedup = AIET_w/ hazard  / AIET_w/o hazard = 1.333

Option 2: Duplicate to Resolve Structural Hazard

Time (clock cycles)

• Separate Instruction Cache (Im) & Data Cache (Dm)
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Why Allowing Structural Hazards?

° A processor w/o structural hazards will always have a lower CPI, if other 
factors are equal, then why a designer allows structural hazards?

Answer: 

Cost!Cost!

Duplication/separation of IC and DC:
a) costly itself
b) processor requires twice as much total memory bandwidth, if     

it needs to support IC and DC accesses in the same cycle.
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Data Hazard on r1

add r1 ,r2, r3

b 4 1 5sub r4, r1, r5

and r6, r1 ,r7

or   r8, r1 ,r9

xor r10 r1 r11
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xor r10, r1, r11



Data Hazard on r1:

• Dependencies backwards in time are hazards

Time (clock cycles)

Add 1 2 3
IF ID/RF EX MEM WBA

R R
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Even Worse: Unpredictable Behavior!

° Interrupts – events other than branches and jumps that change 
the normal flow of instruction execution.

• E.g., asynchronous I/O interrupts

- I/O interrupt is not associated with any instruction

- I/O interrupt does not prevent any instruction from completion/O te upt does ot p e e t a y st uct o o co p et o

– pick your own convenient point to take an interrupt

° If an interrupt occurs between Add and Sub instructions

• The WB stage of the Add will complete

• The value of R1 at that point for the subsequent Sub 
instruction will be the Right result of the Add.

- Execution behavior is unpredictable!

CS420/520  pipeline.16 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Execution behavior is unpredictable!

add r1,r2,r3

sub r4, r1, r5



Option1: HW Stalls to Resolve Data Hazard

Time (clock cycles)

dd 1 2 3
IF ID/RF EX MEM WBA

R R

• Dependencies backwards in time are hazards
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or   r8, r1, r9

xor r10, r1, r11
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But recall use of “Data Stationary Control”

° The Main Control generates the control signals during Reg/Dec

• Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later

• Control signals for Mem (MemWr Branch) are used 2 cycles later

• Control signals for Wr (MemtoReg MemWr) are used 3 cycles later
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Option 1: How HW really stalls pipeline

Time (clock cycles)

dd 1 2 3
IF ID/RF EX MEM WBA

R R

• HW doesn’t change PC => keeps fetching same instruction
& sets control signals to to benign values (0)
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Option 2: SW inserts independent instructions

Time (clock cycles)

dd 1 2 3
IF ID/RF EX MEM WBA

R R

• Worst case inserts NOP instructions
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Simultaneous Readings and Writing

o The register file is used in two stages
• One for reading in ID/RF
• One for writing in WB

o We need to perform two reads and one write every clock cyclep y y

o To handle reads and a write to the same register
• performing register write in the first half of the clock cycle and 
the read in the second half (hardware implementation)

Reg Reg
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Advantage?

Advantage of Half-stage (Simultaneous) Writing

• Dependencies backwards in time are hazards
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Option 3 Insight: Data is available!

Time (clock cycles)

dd 1 2 3
IF ID/RF EX MEM WBA

R R

• Pipeline registers already contain needed data
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HW Change I for “Forwarding” (Bypassing):

• Increase multiplexors to add 2 paths from pipeline registers
• Assumes register read during write gets new value (write then read)
(otherwise more results to be forwarded)
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HW Change II for “Forwarding” (Bypassing):

• Increase multiplexors to add 3 paths from pipeline registers
• Assumes register read during write gets new value (write then read)
(otherwise more results to be forwarded)
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Bypassing (cont.)

• Two (or three) extra inputs on each ALU multiplexer and the 
addition of paths to the new inputs

• the ALU output at the end of the EX (EXEC/MEM  EX)

add $1, $2, $3add $1, $2, $3
add $4, $1, $1

• the ALU output at the end of the MEM stage (MEM/WB  EX)

add $1, $2, $3
add $5, $6, $7
lw   $4, $1 (100) 
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• the memory output at the end of the MEM stage (MEM/WB  EX)

lw $1, $2 (100)
add $5, $6, $7
add $2, $1, $1



The Delay Load Phenomenon

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem Wr10: Load

Ifetch Reg/Dec Exec Mem WrAdd 1

° Although Load is fetched during Cycle 1:

• The data is NOT written into the Reg File until the end of Cycle 5

Ifetch Reg/Dec Exec Mem WrAdd 1

Ifetch Reg/Dec Exec Mem WrAdd 2

Ifetch Reg/Dec Exec Mem WrSub 3

Ifetch Reg/Dec Exec Mem WrAdd 4
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The data is NOT written into the Reg  File until the end of Cycle 5

• We cannot read this value from the Reg File until Cycle 6

• 3-instruction delay  before the load  take effect if no bypassing

° This is referred to as Delay Load:

• Clever design techniques can reduce the delay to ONE instruction

Forwarding reduces Data Hazard to 1 cycle:   
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Option2: HW Stalls to Resolve Data Hazard

Time (clock cycles)

l 1 0( 2)
IF ID/RF EX MEM WBA

R R

• “pipeline interlock”: checks for hazard & stalls
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Option 3: SW Inserts Independent Instructions

Time (clock cycles)

l 1 0( 2)
IF ID/RF EX MEM WB

• Worst case inserts NOP instructions
• MIPS I solution: No HW checking
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Try producing fast code for

a = b + c;

d = e – f;

assuming a b c d e and f

Option 4: Software/Compiler Scheduling / ILP

assuming a, b, c, d, e, and f 

in memory. 

Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW  a,Ra 

Fast code:

LW Rb,b

LW Rc,c

LW Re,e 
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,

LW Re,e 

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

ADD Ra,Rb,Rc

LW Rf,f

SW  a,Ra 

SUB Rd,Re,Rf

SW d,Rd

Option 5: Hardware/Dynamic Scheduling / ILP

° Static/compiler pipeline scheduling by the compiler tries to 
minimize stalls by separating dependent instructions so that 
they will not lead to hazards

° Dynamic hardware scheduling tries to avoid stalls when 
dependences, which could generate hazards, are present.

CS420/520  pipeline.32 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs



Pipeline Data Hazard Detection (Delay Load)
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° Comparing the destination and sources of adjacent instructions

Pipeline Interlock Control (for Delay Load)

Opcode of ID/EX      Opcode field of IF/ID
(ID/EX.IR 0…5) (IF/ID.IR 0…5) Matching operand fields

Load Reg-Reg ALU                  ID/EX.IR[rt] == 
IF/ID.IR[rs] 

Load Reg-Reg ALU ID/EX.IR[rt] == 

IF/ID.IR[rt]

Load Load, Store, ID/EX.IR[rt] == 
ALU imme, branch          IF/ID.IR[rs]
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° The logic to detect the need for load interlock during the ID 
stage of an instruction requires three/two comparisons

• Why three: is R-type ‘rs’ in the same bits position of the 
instruction as that of I-type ‘rs’? Though in MIPS, they are!



From Last Lecture: The Delay Branch Phenomenon
Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr16: R-type

12: Beq
(target is 1000)

Clk

° Although Beq (4 cycle vs. 3 cycle BEQZ/BNEZ) is fetched in Cycle 4:
• Target address is NOT written into the PC until the end of Cycle 7

16: R type

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr24: R-type

20: R-type

Ifetch Reg/Dec Exec Mem Wr1000: Target of Br
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g y
• Branch’s target is NOT fetched until Cycle 8
• 3-instruction delay  before the branch take effect

° This is referred to as Control Hazard (greater loss than data hazards):
• make a deci. based on result of an instr. whi. others are executing
• Clever design techniques can reduce the delay to ONE instruction

General Control Hazard Solution: Stall
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° Stall: wait until decision is clear

° I t 3 2 l t l (i if ZERO d t ti h d PC

O
r
d
e
r

Beq

Load

L
UMem Reg Mem Reg

A
L

UReg Mem RegMem
Lost

potential
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° Impact: 3 or 2 lost cycles (i.e., if ZERO detection happens and PC 
updates in the end of stage 3 in branch instruction) => slow

° Move decision to end of decode

• Move Zero test to ID/RF stage (like BEQZ/BNEZ)

• Adder to calculate new PC in ID/RF stage

• 1 clock cycle penalty for branch vs. 3



Recall: An Abstracted Multiple Cycle Datapath

Add

CS420/520  pipeline.37 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

° Move decision to end of decode

• 1) Move Zero test to ID/RF stage (like BEQZ/BNEZ)

• 2) Adder to calculate new PC in ID/RF stage; 1 cycle penalty vs. 3

Recap: A View of the Pipeline Execution Unit

Clk

Exec

You are here!

Mem
Move to stage 2?
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Taken Branch vs. Not-Taken Branch

Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr16: successor

12: Beq

Clk

IfetchIfetch Reg/Dec Exec Mem Wr16: successor

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr

20: successor + 1

° Taken branch: If a branch changes the PC to its target address

Ifetch

24: successor + 2
stall

How this stall can be implemented by “control”?
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° Not-Taken (untaken) branch: If a branch sequentially falls through 

° If the branch above is not taken, the second IF for branch successor 
is redundant

• How to take the advantage since the right instruction was indeed 
fetched?

Reducing Pipeline Branch Penalties:

° Four simple compile-time schemes

• STATIC: fixed for each branch during the entire execution; 
software try to minimize the branch penalty by using knowledge of 
the hardware and of branch behavior

° More powerful HW and SW techniques for both static and dynamicMore powerful HW and SW techniques for both static and dynamic 
branch prediction

• Instruction Level Parallelism (ILP)
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Technique 1: freezing/flushing

° Freezing or flushing

• Holding or deleting any instructions after the branch until the 
branch decision & destination is known

- Simplicity for both HW and SW

– HW doesn’t change PC => keeps fetching same instructionHW doesn t change PC > keeps fetching same instruction
& sets control signals to benign values (0)

- Early solutions (fixed penalty, CPI 2 for branch instructions)

Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

Ifetch Reg/Dec Exec Mem Wr12: Beq

Clk
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Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr16: successor

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr

12: Beq

20: successor + 1

Ifetch

24: successor + 2
stall

Technique 2: not-taken branch

° Single Direction Prediction; not-taken branch

• Treat every branch as not taken

• Allowing HW to continue as if the branch were not executed

- simplifies the instruction fetch

Old i li d I t l i486- Older pipelined processors, e.g., Intel i486

• What if branch is taken?

- For integer benchmarks, branches are taken about 60% 

- Turn the fetched instruction into a noop, and restart IF at the 
target address

- no “damage” has been done yet to Registers & Memory !

- For integer benchmarks, branches are taken about 60% 
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Techniques 2 (Predicted-not-taken) Diagram

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem WrInstruction i + 1

Untaken
branch

Ifetch Reg/Dec Exec Mem WrInstruction i + 2

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr

Instruction i + 3

Instruction i + 4

Ifetch Reg/Dec Exec Mem WrTaken
branch

1 stall
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Ifetch idle idle idle idleInstruction i + 1

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem WrBranch target

Branch target + 1

Branch target + 2

Technique 3: taken branch

° Single Direction Prediction; taken branch

• Treat every branch as taken -- a higher prediction accuracy (60%)

• Question 1: does it makes sense in our five-stage pipelining?

- Does not know the target address any earlier than we 
know branch outcome

• Better prediction accuracy: Backwards Taken/Forwards Not Taken

- Majority of backwards branches are loop branches, which 
ll i i b f i i b h lik l

know branch outcome

• Question 2: when does it makes sense?

- In some processors, branch target address is available before 
the branch outcome

- But often more HW to calculate the branch address earlier
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usually iterate many times before exiting; branches are likely 
taken

- Pros: no ISA modification since the sign of target 
displacement is encoded in the branch instruction. 

- Example: HP PA-RISC2.0 ISA



Technique 4: delayed branch

° Execution cycle

branch instruction

sequential successor 1

branch target if taken or sequential successor 2 if not taken

• A HW component: branch delay slot (1 for MIPS)

- Instruction inside is executed whether branch is taken or not

- Thus, what is the job for the compiler? 

–Make the successor instruction valid and useful!
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Technique 4 Example

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem WrBranch delay
Instruction (i+1)

Untaken
branch

Ifetch Reg/Dec Exec Mem WrInstruction i + 2

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr

Instruction i + 3

Instruction i + 4

Ifetch Reg/Dec Exec Mem WrTaken
branch

Branch delay
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Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem WrBranch target

Branch target + 1

Branch target + 2

Branch delay
Instruction (i+1) Ifetch Reg/Dec Exec Mem Wr



Scheduling the Branch Delay Slot (BDS)

(predicted-taken) (predicted-not-taken)

copied
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Make the successor instruction valid and useful! Worst case: 
It must be OK to execute BDS when the branch goes in the unexpected direction.

R7: an unused 
Temporary R

Summary of Pipelining Hazards

° Speed Up and Pipeline Depth; if ideal CPI is 1, then:

° What makes it easy

  

Speedup = Pipeline depth
1Pipeline stall cycles per instruction

Clock cycle unpipelined
Clock cycle pipelined

• all instructions are the same length
• just a few instruction formats
• memory operands appear only in loads and stores

° What makes it hard: hazards limit performance on computers:

• structural: need more HW resources

• data: need forwarding (& simultaneous write), compiler scheduling

• control: early evaluation & PC, delayed branch, prediction
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control: early evaluation & PC, delayed branch, prediction

° Compilers key to reducing cost of data and control hazards

° More reading: 

• CA 5: Appendix C.2-C.4

• CO 4: Chapter 4.5-4.8


