
CS420/520
Computer Architecture I

Instruction-Level Parallelism

Dr. Xiaobo Zhou
Department of Computer Science

CS420/520 pipeline.1 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Re: Pipeline Data Hazard Detection (Delay Load)

CS420/520 pipeline.2 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

° Comparing the destination and sources of adjacent instructions

What is Instruction-level Parallelism (ILP)

° ILP: the potential overlap among instruction executions due to
pipelining

• The instructions can be executed and evaluated in parallel

° How to exploit ILP
• Hardware stall
• Software NOP
• Hardware forwarding/bypassing

° Two MORE largely separable approaches to exploiting ILP
• Static/compiler pipeline scheduling by the compiler tries to

CS420/520 pipeline.3 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Static/compiler pipeline scheduling by the compiler tries to
minimize stalls by separating dependent instructions so that
they will not lead to hazards

• Dynamic hardware scheduling tries to avoid stalls when
dependences, which could generate hazards, are present.

Try producing fast code for
a = b + c;

Software (compiler) Static Scheduling / ILP

° Software scheduling: the goal is to exploit ILP by preserving
program order only where it affects the outcome of the program

d = e – f;
assuming a, b, c, d, e, and f in memory.
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW R

Fast code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra Rb Rc

CS420/520 pipeline.4 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

SW a,Ra
LW Re,e
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra
SUB Rd,Re,Rf
SW d,Rd

Compiler Avoiding Load Stalls:

scheduled unscheduled

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

CS420/520 pipeline.5 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

% loads stalling pipeline

Data Dependences

° Data dependence
• Instruction i produces a result that may be used by

instruction j
• Instruction j is data dependent on instruction k, and

instruction k is data dependent on instruction i (a chain of

loop:
LD F0, 0(R1)
DADD F4, F0, F2
SD F4, 0(R1)
DAADI R1 R1 -8

instruction k is data dependent on instruction i (a chain of
dependences)

CS420/520 pipeline.6 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

DAADI R1, R1, 8
BNE R1, R2, Loop

Name Dependences
° Name dependence (not-true-data-hazard)

• Occurs when two instructions use the same register or
memory location, called a name, but there is no flow of data
between the instructions associating with that name

• Remember: do not be restricted to the 5-stage pipeline!

Anti-dependence (WAR)
j writes a register or memory location that i reads:

ADD $1, $2, $4
SUB $4, $5, $6

g p p

Output dependence (WAW)

What if SUB does earlier than ADD?
Is there a data flow?

CS420/520 pipeline.7 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

p p ()
i and j write the same register or memory location

SUB $4, $2, $7
SUBI $4, $5, 100

How many ways for data to flow between instructions?

What if SUBI does earlier than SUB?
Is there a data flow?

Data Hazards - RAW
° Data hazards may be classified, depending on the order of read

and write accesses in the instructions

° RAR (read after read) is not a hazard, nor a name dependence

° RAW (read after write):

Example?

RAW (read after write):
• j tries to read a source before i writes it, so j incorrectly gets

the old value; most common type – true data hazards

CS420/520 pipeline.8 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Can you nominate an example?

Data Hazards - WAW

° WAW (write after write):
• Output dependence of name hazards: j tries to write an

operand before it is written by i.

Can you nominate an example?

Is WAW possible in the MIPS classic five stage

Short/long pipelines

MULTF F4, F5, F6
LD F4, 0(F1)

CS420/520 pipeline.9 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Is WAW possible in the MIPS classic five-stage
integer pipelining? Why?

Data Hazards - WAR

° WAR (write after read):
• Anti-dependence of name hazards: j tries to write a

destination before it is read by i, so i incorrectly gets the new
value

Example?

1) Due to re-ordering
DIV $0, $2, $4 (add is stalled waiting DIV,
ADD $6, $0, $8 if SUB is done before ADD,
SUB $8, $10, $14 anti-dependence violated).

CS420/520 pipeline.10 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Is WAR possible in the MIPS classic five-stage integer
pipelining?

2) One writes early in the pipeline and some others read a
source late in the pipeline

ILP and Dynamic Scheduling

° Dynamic scheduling: the goal is to exploit ILP by preserving
program order only where it affects the outcome of the program

Out-of-order execution
DDIV F0, F2, F4
DADD F10, F0, F8
DSUB F12, F8, F14 // DSUB not dependent on

// anything in the pipeline
// can its order be exchanged
// with DADD?

Out-of-order execution may introduce WAR and WAW hazards
DDIV F0, F2, F4

CS420/520 pipeline.11 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

DDIV F0, F2, F4
DADD F6, F0, F8 // anti-dependence between DADD
DSUB F8, F10, F14 // and DSUB; if out-of-order, WAR
DMUL F6, F10, F8 // register renaming helps!

Dynamic Scheduling – Tomasulo’ Register Renaming

Before: DDIV F0, F2, F4
DADD F6, F0, F8
SD F6, 0(R1)
DSUB F8, F10, F14
DMUL F6 F10 F8

//anti-dependence DSUB – F8, WAR
//output dependence DMUL-F6, WAW

// How many true data dependences?
DMUL F6, F10, F8

After: DDIV F0, F2, F4
DADD S, F0, F8
SD S, 0(R1)
DSUB T, F10, F14
DMUL F6, F10, T

y p

CS420/520 pipeline.12 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

What dependencies disappear? And what are still there?

Finding the subsequent use of F8 requires compiler analysis or
hardware support

What to do with the subsequence use of F8?

What are dependencies there?

Concurrency and Parallelism

° Concurrency in software is a way to manage the sharing of
resources efficiently at the same time

• When multiple software threads of execution are running
concurrently, the execution of the threads is interleaved onto
a single hardware resourcea single hardware resource

- Why not schedule another thread while one thread is on
a cache miss or even page fault?

- Time-sliced multi-threading increases concurrency,
overlapping CPU time with I/O time

- Pseudo-parallelism

° True parallelism requires multiple hardware resources

CS420/520 pipeline.13 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

p q p
• Multiple software threads are running simultaneously on

different hardware resources/processing elements
• One approach to addressing thread-level true parallelism is

to increase the number of physical processors / execution
elements in the computer

ILP and Super-Scalar Processors

° ILP: the potential overlap among instruction executions due
to pipelining

• To increase the number of instructions that are executed
by the processor on a single clock cycle

• A processor that is capable of executing multiple• A processor that is capable of executing multiple
instructions in a single clock cycle is known as a
super-scalar processor

• http://en.wikipedia.org/wiki/Superscalar

CS420/520 pipeline.14 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

(a) A three-stage path (b) A superscalar CPU

Multi-Threading
° Process: for resource grouping and execution

° Thread: a finer-granularity entity for execution and parallelism

• Lightweight processes, multithreading

° Multi-threading: Operating system supports multiple threads of

User-level Threads
Used by applications and handled by user-level runtime

g p g y pp p
execution within a single process
• At hardware level, a thread is an execution path that remains

independent of other hardware thread execution paths

Kernel level Threads na
l f

lo
w

CS420/520 pipeline.15 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Kernel-level Threads
Used and handled by OS kernel

Hardware Threads
Used by each processor

O
pe

ra
tio

n

Simultaneous Multi-threading (Hyper-Threading)
° Simultaneous multi-threading (SMT)

• Create multiple logical processors with a physical processor
• One logical processor for a thread, which requires an architecture

state consisting of the GPRs and Interrupt logic
• Duplicate multiple architecture states (CPU state), and, let other CPU p p (), ,

resources, such as caches, buses, execution units, branch prediction
logic shared among architecture states

• Multi-threading at hardware level, instead of OS switching
• Intel’s SMT implementation is called Hyper-Threading Technology

(HT Technology)

CS420/520 pipeline.16 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

What is next?

Multi-Core

CS420/520 pipeline.17 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Limitations of Sing-core Technology

CS420/520 pipeline.18 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Multi-Processor and Multi-Core

° multi-core processors use chip multi-processing (CMP)
• Cores are essentially two individual processors on a single die
• May or may not share on-chip cache
• True parallelism, instead of high concurrency

CS420/520 pipeline.19 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Stanford HYDRA Multi-core Structure

CS420/520 pipeline.20 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Multi-core Processors as a Solution

a) Advantages and improvements
• Performance increase by means of parallel execution
• Power and Energy efficient cores (Dynamic power coordination)
• Minimized wire lengths and interconnect latencies
• Both ILP and thread level parallelism• Both ILP and thread level parallelism
• Reduced design time and complexity

b) Task management and parceling
• Usually operating system distributes the application to the cores
• Can be done according to resource requirements

c) Multicore examples

CS420/520 pipeline.21 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

c) Multicore examples
AMD Opteron Enterprise, Athlon64
Intel Pentium Extreme edition, Pentium D
IBM Power 4, Power 5 and Sun Niagara

Multi-core vs Superscalar vs SMT

CS420/520 pipeline.22 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Multicore VS Superscalar VS SMT(Hammond, 1997)

Multi-core vs Superscalar

• Superscalar processors differ from multi-core processors in that the
redundant functional units are not entire processors.

• A single superscalar processor is composed of finer-grained
functional units such as the ALU, integer shifter, etc. There may be
multiple versions of each functional unit to enable execution ofmultiple versions of each functional unit to enable execution of
many instructions in parallel. This differs from a multicore CPU
that concurrently processes instructions from multiple threads, one
thread per core.

•The various techniques are not mutually exclusive—they can be (and
frequently are) combined in a single processor. Thus a multicore CPU is
possible where each core is an independent processor containing

CS420/520 pipeline.23 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

multiple parallel pipelines, each pipeline being superscalar.

http://en.wikipedia.org/wiki/Superscalar

Multi-Core and SMT

° multi-core processors can be combined with SMT technology

CS420/520 pipeline.24 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Pthreads Overview

° What are Pthreads?
• An IEEE standardized thread programming interface
• POSIX threads
• Defined as a set of C language programming types and procedure g g p g g yp p

calls, implemented with a pthread.h header/include file and a thread
library

To software developer:
a thread is a “procedure” that runs independently from its main program

CS420/520 pipeline.25 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

The Pthreads API

° The API is defined in the ANSI/IEEE POSIX 1003.1 – 1995
• Naming conventions: all identifiers in the library begins with

pthread_
• Three major classes of subroutines

- Thread management mutexes condition variablesThread management, mutexes, condition variables

Routine Prefix Functional Group

pthread_ Threads themselves and miscellaneous
subroutines

pthread_attr_ Thread attributes objects
pthread_mutex_ Mutexes

CS420/520 pipeline.26 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

pthread_mutexattr_ Mutex attributes objects.
pthread_cond_ Condition variables
pthread_condattr_ Condition attributes objects
pthread_key_ Thread-specific data keys

Multi-Thread Programming Reference Links
° http://www.llnl.gov/computing/tutorials/pthreads/

• Many examples and examples with bugs

° http://yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

° http://www gnu org/software/libc/manual/html node/POSIXhttp://www.gnu.org/software/libc/manual/html_node/POSIX-
Threads.html

° GDB for debugging:
http://sources.redhat.com/gdb/current/onlinedocs/gdb_6.html

° DDD for debugging:

http://www.gnu.org/manual/ddd/html mono/ddd.html

CS420/520 pipeline.27 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

http://www.gnu.org/manual/ddd/html_mono/ddd.html

Where to get more information?
° CA4

• 2.1, 2.4 (pages 89 – 93)

° CA3:
• 3.1 – 3.2, 4.1

° Multi-core programming, by Shameem Akhter and Jason Roberts,
Intel Press (ISBN 0-9764832-4-6)

° Internet
• Find out more about Multi-core technology, use your own words

and write a summary report from both the hardware support and
software programming viewpoints

CS420/520 pipeline.28 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Homework

° Pipeline homework; see course Web site.

° Reading assignment; see course Web site.

CS420/520 pipeline.29 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

How to Improve Concurrency and Parallelism

° One approach to address the increasingly concurrent nature of
modern software involves using a pre-emptive, or time-sliced,
multitasking operating system

• Time-sliced multi-threading increases concurrency,
overlapping CPU time with I/O timeoverlapping CPU time with I/O time

° One approach to address thread-level true parallelism is to
increase the number of physical processors / execution
elements in the computer

CS420/520 pipeline.30 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

Concurrency and Parallelism

° Concurrency in software is a way to manage the sharing of
resources efficiently at the same time

• When multiple software threads of execution are running
concurrently, the execution of the threads is interleaved onto
a single hardware resourcea single hardware resource

- Why not schedule another thread while one thread is on
a cache miss or even page fault?

- Pseudo-parallelism

° True parallelism requires multiple hardware resources
• Multiple software threads are running simultaneously on

different hardware resources/processing elements

CS420/520 pipeline.31 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

p g

Superscalar and Superpipelining

° Superpipelining exploits
the fact that many
pipeline stages perform
tasks that require less
than half a clock cycle.

Thus a doubled• Thus, a doubled
internal clock speed
allows the
performance of two
tasks in one external
clock cycle [Stallings
Com. O&A 7e]

° Superscalar [Shen &
Lipasti, McGraw Hill]

CS420/520 pipeline.32 Adapted from ©UCB97 & ©UCB03UC. Colorado Springs

p ,]

