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Abstract

Network applications and users have very diverse service expectations and requirements, demanding for provisioning different levels
of quality of service on the Internet. As the speed of network links has been rising at a pace that exceeds that of the growth in the buffer
size, packet loss rate differentiation has been an active research topic. However, none of the existing packet dropping schemes for loss
rate differentiation considered an important issue, that is, the retransmission overhead of dropped packets. In this paper, we design a
hop-count based probabilistic packet dropper (HPPD) for congestion mitigation and loss rate differentiation. HPPD aims to meet a
unique two-fold objective by two-dimensional loss rate differentiation: the primary one is the congestion mitigation that aims to reduce
congestion in the first place by dropping intra-class packets differently based on their maturity levels to reduce retransmission cost; the
other is inter-class proportional loss rate differentiation. The maturity level of a packet, the number of hops it has travelled, is inferred
from its time-to-live value in the IP header. We propose a novel intra-class nth-root proportional dropping scheme. The scheme reduces
retransmission cost by giving higher dropping probabilities to less mature packets while all packets have their forwarding chances. The n

is a controllable parameter trading off dropping fairness for congestion mitigation. It provides great controllability to network operators.
Simulation results show that HPPD can significantly mitigate the congestion by reducing the retransmission overhead of dropped pack-
ets and achieve the proportional loss rate differentiation at the same time.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

There is an increasing demand of provisioning differ-
ent levels of quality of service (QoS) on the Internet to
support different types of network applications and
various user requirements. Differentiated Services (Diff-
Serv) is one of the major efforts to meet the demand
[1]. It aims to provide differentiated services between
classes of aggregated traffic flows within a router, rather
than to offer QoS guarantees to individual flows. To
receive different levels of QoS, packets are assigned with
different service types or traffic classes at the network
edges. DiffServ-compatible routers in the network core
0140-3664/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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perform stateless prioritized packet forwarding or drop-
ping, so called ‘‘per-hop behaviors’’ (PHBs), to the clas-
sified packets. Due to its per-class stateless processing,
the DiffServ architecture exhibits a good scalability.
There are two basic schemes to DiffServ provisioning.
Absolute DiffServ aims to provide statistical assurances
for a class’s received performance measures, such as a
minimum service rate or maximum delay. Relative
DiffServ is to quantify the quality spacings between dif-
ferent classes. The proportional differentiation model is
popular due to its proportionality fairness and predict-
ability [3,4].

Packet delay and loss rate are two key QoS metrics con-
sidered in the DiffServ context. Both are caused by network
congestion that arises when the incoming traffic is close to
or exceeds the network router resources, i.e., link speed and
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buffer size. The likelihood of packet losses is a very impor-
tant performance measure for most of Internet traffic, and
it is especially important for peak workload control [3].
The past few years have witnessed that the speed of net-
work links has been rising at a pace that exceeds that of
the growth in buffer size [8]. As a result, packet loss rate dif-
ferentiation in high workload situations has been an active
research topic. There are a number of interesting differenti-
ated buffer management and packet dropping schemes.
PLR droppers in [3] aim to provide proportional loss rates
to different traffic classes according to their pre-specified
differentiation weights. JoBS in [15] extends the propor-
tional loss rate model by providing both absolute loss
and delay guarantees and proportional differentiations.
The proportional differentiation constraint is relaxed to
satisfy the absolute constraints when the two sets of con-
straints cannot be simultaneously satisfied. BRD dropper
in [8] seeks to minimize the loss rate differences between
traffic classes subject to the absolute loss constraints and
the relative loss constraints. Those dropping schemes are
able to effectively achieve their differentiation objectives.
However, none of them considered an important issue, that
is, the retransmission overhead of dropped packets.

A dropped packet might be retransmitted by protocols
such as TCP or by end applications. Intuitively, dropping
a packet which has travelled 20 hops results in more
retransmission overhead and hence heavier congestion in
networks than dropping a packet which has only travelled
2 hops. TCP’s strategy is to control congestion once it hap-
pens, instead of trying to avoid congestion in the first place.
An alternative to congestion control is congestion avoid-
ance, which is to predict when congestion is about to hap-
pen and then to reduce the rate at which end nodes send
data just before packets start being discarded. Previous
studies have found that hop count distributions at gate-
ways/routers are usually bell-shaped and the Gaussian dis-
tribution is a good first-order approximation; refer to [11]
for the hop count distribution of a well-connected commer-
cial server net.yahoo.com. To mitigate the congestion at
the first place, our motivation is that packets should be
given different dropping probabilities according to the
number of hops they have travelled so as to reduce their
retransmission overhead.

In this paper, we design a novel hop-count based prob-
abilistic packet dropper (HPPD). The hop count of a
packet is inferred from its time-to-live (TTL) value. HPPD
provides two-dimensional loss rate differentiation. Within a
traffic class, a less mature packet, which has a lower hop
count value, has higher probability to be dropped than a
more mature packet so as to reduce the retransmission
overhead for dropped packets. We refer to this as intra-

class loss differentiation. Between traffic classes, a packet
from a low priority class has higher probability to be
dropped than a packet from a high priority class. We refer
to this as inter-class loss differentiation. Thus, HPPD aims
to meet a two-fold objective: the primary one is the conges-
tion mitigation that tries to reduce congestion in the first
place by reducing retransmission overhead of dropped
packets; the other is proportional loss rate differentiation
for DiffServ provisioning. DiffServ is concerned with
PHBs, since it is stateless. However, TTL brings some glo-
bal state of a packet to the routers. The uniqueness of our
work lies in the use of hop count information inferred from
TTL in making differentiated packet dropping decisions so
as to achieve congestion mitigation and loss rate differenti-
ation at the same time.

There are two important considerations to the success of
HPPD, i.e., congestion mitigation, and fairness. A simple
way to reducing retransmission overhead is to drop packet
strictly according to their maturity levels. A packet with a
lower hop count will be always dropped before a packet
with a higher hop count if there is backlogged one. How-
ever, this kind of strict priority dropping may lead to star-
vation for packets from neighbor routers. A feasible
scheme should give packets with different hop count differ-
ent chances to be forwarded. We propose a novel intra-
class nth-root proportional dropping scheme for HPPD.
The n is a controllable parameter trading off dropping fair-
ness for congestion mitigation. Simulation results show
that HPPD can significantly mitigate network congestion
by reducing the retransmission overhead of dropped pack-
ets and achieve the proportional loss rate differentiation at
the same time.

The structure of the paper is as follows. In Section 2, we
review existing loss rate differentiation schemes. Section 3
presents the HPPD dropping strategies. Section 4 presents
the design and implementation issues. Section 5 focuses on
the performance evaluation. Section 6 concludes the paper
with remarks in future work.

2. Related work

Congestion control and avoidance has been studied
extensively in computer communications and networks.
Early studies in packet networks included slow start
[10], early random drop [7], and random early detection
[6]. There are recent studies in buffe management for
congestion mitigation and avoidance in wireless sensor
networks [2,5,9]. There are also recent studies that pro-
pose to utilize the loss information to design robust
active queue management [13,19]. Our approach is differ-
ent that it utilizes the hop count information, inferred
from TTL information, to execute loss rate differentia-
tion so as to reduce the retransmission cost of dropped
packets and mitigate the congestion in networks. It is
complementary to previous work on congestion mitiga-
tion and control.

Loss rate differentiation in packet networks is an active
research topic. Representative differentiated packet drop-
ping schemes include PLR(1), PLR(M), JoBS, and
BRD. PLR(1) and PLR(M) [3] were proposed for provid-
ing proportional loss rate differentiation. A packet class is
assigned a loss differentiation parameter. The PLR schemes
adjust the normalized loss rates so that they are eventually
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equal for all classes and proportional loss rate differentia-
tion is achieved. Two schemes differ in the time interval
over which the loss rates are measured and proportionally
adjusted. For PLR(1), the loss rate of a class is estimated
based on a long history of packet arrivals. This makes it
less adaptive for changing class load. In PLR(M), the loss
rate is measured over last M arrived packets.

JoBS in [15] extends the proportional loss rate model by
providing both absolute loss and delay guarantees and pro-
portional differentiations. The loss ratio and delay differen-
tiation are combined into a cost function. The service rate
of a class is adjusted in order to minimize the cost function.
The proportional differentiation constraint is relaxed to
satisfy the absolute constraints when the two sets of con-
straints cannot be simultaneously satisfied. A non-linear
programming algorithm was proposed to solve the optimi-
zation problem on every packet arrival. It significantly
increases the overhead of the approach.

BRD dropper in [8] seeks to minimize the loss rate dif-
ferences between traffic classes subject to the absolute loss
constraints and the relative loss constraints. To reduce the
packet dropping overhead, BRD utilizes a random drop
mechanism for loss rate differentiation. In the mechanism,
the loss ratio is calculated for every sampling period. At the
end of each sampling period, the loss probability of every
class is calculated for next sampling period. Upon arrival
of each packet, it is randomly dropped according to its
dropping probability calculated from last sampling period.
Our work aims to achieve congestion mitigation and pro-
portional loss rate differentiation at the same time and
therefore extends the scope of those previous efforts.

Loss rate differentiation aside, delay differentiation has
been studied extensively in packet networks and end-point
computer systems. Many algorithms were proposed for
providing proportional delay differentiation (PDD) ser-
vices. The main objective is to keep the ratio of average
delay of a higher priority class to that of a lower priority
class equal to the pre-specified value. Existing algorithms
can be classified into two categories: rate-based, as exem-
plified by BPR [4] and JoBS [15], and time-dependent pri-
ority based, as exemplified by WTP [4], A-WTP [14],
PAD [4], HPD [4], MDP [16], and LAD [20]; see [23] for
a taxonomy. There are also many efforts for service differ-
entiation on Internet and multimedia servers; see [17,24]
for representatives.

In packet forwarding, a router discards a packet if its
TTL value reaches zero. The work in [21] proposed heuris-
tic QoS-aware routing algorithms which essentially divide
the end-to-end path into at most two super-edges that are
connected by a relay node. Routers that lie on the same
super-edge use either the cost metric or the delay metric
to forward packets. A packet will be forwarded along the
least-cost path if the path can deliver the packet before
its due-date, inferred from the TTL field. Otherwise, the
router will try the least-delay path, or the packet will be
dropped or forwarded with no guarantees [21]. Recently,
TTL value is also used for security purposes. The work
in [11] proposed a novel hop-count filtering scheme as a
defense against spoofed DDoS traffic. The rationale is that
an attacker can forge any field in the IP header, but not fal-
sify the number of hops an IP packet takes to reach its des-
tination. Using a mapping between IP addresses and their
hop-counts to an Internet server, the server can distinguish
spoofed IP packets from legitimate ones. The hop-count
information is inferred from the TTL value in the IP
header.
3. HPPD: a hop-count based probabilistic packet dropper

3.1. Inter-class proportional packet dropping scheme for

diffserv provisioning

For DiffServ provisioning, packets are classified into
multiple classes in the network edges according to their
desired QoS levels. DiffServ-enabled network core routers
perform prioritized packet forwarding and dropping. An
effective relative DiffServ scheme must satisfy two basic
properties: predictability and controllability. Predictability
requires that higher classes receive better or no worse ser-
vice quality than lower classes, independent of the class
load distributions. Controllability requires that the net-
work operators contain a number of controllable parame-
ters that are adjustable for the control of quality spacings
between classes. An additional requirement is fairness.
Fairness is a quantitative extension of the predictability,
which describes how much better QoS metric received by
a class compared with that received by another class. For
example, proportionality is a popular fairness metric.

The proportional differentiation model has been widely
accepted as an important relative DiffServ model because
of its inherent differentiation predictability, controllability,
and proportionality fairness [3,4]. It states that the quality
spacing between class i and class j to be proportional to
their pre-specified differentiation parameters di and dj, that
is, qi=qj ¼ di=dj; 1 6 i; j 6 N where qi and qj are the QoS
factor of class i and class j, respectively. So it is up to net-
work applications and clients to select appropriate QoS
levels in terms of differentiation parameters that best meet
their requirements, cost, and constraints.

HPPD is a probabilistic packet dropper. Its basic idea is
to divide the dropping process into a sequence of short
periods. In each period, based on the measured resource
utilization and the predicted workload, the packets are
dropped with different probabilities. HPPD inter-class
dropping scheme aims to control the ratios of the average
loss rate of classes based on their normalized differentiation
parameters. Let Li denote the total loss probability of pack-
ets in class i. HPPD requires that the ratio of total loss
probability of class i to class j is fixed to the ratio of their
differentiation parameters

Li

Lj
¼ di

dj
1 6 i; j 6 N : ð1Þ
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The differentiation predictability requires that higher clas-
ses receive better services, i.e., lower loss rate. Without loss
of generality, we assume that class 1 is the’highest class’
and set 0 < d1 < d2 < � � � < dN . Let ki denote the packet ar-
rival rate of class i, which is normalized based on the rou-
ter’s forwarding capacity. When the total arrival rate
exceeds the forwarding capacity (C), we have

XN

i¼1

kiLi ¼
XN

i¼1

ki � C: ð2Þ

The set of equations (1), together with the dropping con-
straint (2), lead to a linear equation system. It follows the
HPPD inter-class probabilistic dropping scheme as

Li ¼
di
PN

i¼1ki � C
� �
PN

i¼1diki

; 1 6 i 6 N : ð3Þ
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Fig. 1. Loss probability of packets due to the intra-class dropping
schemes.
3.2. Intra-class nth-root proportional packet dropping

scheme for congestion mitigation

To reduce the retransmission overhead of dropped
packets, HPPD provides intra-class loss rate differentiation
to packets with different hop counts. Let k denote the hop
count of a packet when it arrives at the router; p 6 k 6 q
where p and q are the lower bound and the upper bound
of the hop-count, respectively. Let fiðkÞ be the probability
of a packet from class i with hop count k, and ‘k

i be the
dropping probability of a packet from class i with hop-
count k. For packet class i, given its overall dropping prob-
ability Li, we have the intra-class dropping constraint

Xq

k¼p

fiðkÞ‘k
i ¼ Li; 1 6 i 6 N : ð4Þ

The feasibility of the intra-class dropping scheme is
important to the success of HPPD. As mentioned above,
a simple way to reducing retransmission overhead is to
drop packet strictly according to their maturity levels. A
packet with a lower hop count will be always dropped
before a packet with a higher hop count. However, this
strict priority dropping may lead to starvation for packets
from neighbor routers. A feasible scheme should give
packets with different hop counts fair chances of forward-
ing while giving differentiated packet dropping probabili-
ties according to hop count values. One possible
approach is an intra-class proportional dropping scheme,
i.e., ‘k1

i =‘
k2
i ¼ k2=k1; p 6 k1; k2 6 q. However, our preli-

minary experiments found that this intra-class propor-
tional dropping scheme could only gain very limited
retransmission saving because there are only few packets
with low hop count values due to the bell-shaped hop
count distribution. The scheme is also lack of controllabil-
ity for network operators.

We propose a novel nth root proportional intra-class
dropping scheme. We find a function gðxÞ that offers a
desirable intra-class dropping property. That is, the drop-
ping probability of a packet maintains high before its
hop count approaches the mean of the hop-count distribu-
tion, and maintains low when its hop count is greater than
the mean. The function gðxÞ is given as

gðxÞ ¼ ðm� xÞ1=n if x 6 m; 1 6 n;

�ðjm� xjÞ1=n if m 6 x; 1 6 n;

(
ð5Þ

where x is hop count variable, and m is the mean of the hop
count distribution. Since the dropping probability should
be positive, we normalize it by ðq� mÞ1=n and have a func-
tion g0ðxÞ ¼ gðxÞ þ ðq� mÞ1=n. It leads to the intra-class
nth-root proportional scheme. That is

‘k1
i

‘k2
i

¼ g0ðk1Þ
g0ðk2Þ

; p 6 k1; k2 < q: ð6Þ

The rationale is its feasibility, controllability, differentiation
predictability, and nth-root proportional fairness. Interest-
ingly, when n ¼ 1, the scheme is reduced to a proportional
scheme. Actually, n is a controllable parameter trading off
dropping fairness for congestion mitigation. It provides nice
controllability to network operators. Note that when a pack-
et with hop count q (the upper bound) arrives at a router, its
dropping probability is either zero (the packet reaches its
destination) or 1 (the packet expires). Fig. 1 shows the in-
tra-class dropping probability of packets with different hop
counts due to a uniform loss scheme, a proportional loss
scheme, and the nth-root proportional loss scheme (n ¼ 3)
when the workload is 125%. Note that the overall loss rate
(dropping probability) is 20% of the workload.

The set of equation (6), together with the dropping con-
straint (4), lead to a linear equation system. It follows the
intra-class packet dropping probability is calculated as

‘k
i ¼

g0ðkÞLiPq
j¼pfiðjÞg0ðjÞ

: ð7Þ

Note that the calculated loss probability could be greater
than 1 for packets with low hop count values if the overall
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workload is high enough. The dropping scheme is reduced
to strict priority dropping for those packets.

If a packet with hop count k is dropped by the router, its
retransmission cost is k hops. Because packets from differ-
ent classes have different differentiation weights, the func-
tion of the overall retransmission cost due to a dropping
scheme is

Cost ¼
XN

i¼1

di � ki

Xq

k¼p

kfiðkÞ‘k
i : ð8Þ
4. Design and implementation issues

4.1. Calculation and estimation of hop count distributions

The hop-count value of an arrived packet is inferred
from its TTL value. TTL is an 8-bit field in the IP
header. TTL was originally introduced to specify the
maximum lifetime of a packet in the Internet. Each
intermediate router decrements the TTL value of an IP
packet by one before forwarding it to the next-hop rou-
ter. If the TTL reaches zero, the packet will be dropped
without forwarding. The hop-count value of the packet
is therefore calculated as the initial TTL subtracted by
the current TTL value. However, a technical issue is that
there is no consensus on the initial TTL value. Different
operating systems may set the initial TTL value differ-
ently. Fortunately, most modern operating systems use
only a few initial TTL values, 30, 32, 60, 64, 128, and
255 [18]. These initial TTL values cover most of the pop-
ular operating systems, including MS Windows, Mac OS,
Linux, SUN OS, Solaris, and many other commercial
Unix systems. The work in [11] proposed a novel way
to approximate hop-count of a packet according to its
TTL value. It determines the initial TTL value of a
packet by selecting the smallest initial value in the set
that is larger than the TTL when the packet arrives at
the router. Thus, the hop count of the packet can be cal-
culated and its distribution is estimated in each simula-
tion period. Note that it is even possible that the hop
count information will be available in a packet header
in the future Internet.
4.2. Estimation of request arrival rate

The request arrival rate of each class (ki) is estimated by
counting the number of packets from each class occurring
in a moving window of certain immediate past periods. The
moving window estimation approach has been used in
many similar experiments [8,23,24]. A smoothing technique
based on a decaying function is applied to take weighted
averages over past estimates. We have also examined the
performance of the moving window method with different
window size settings and other prediction methods, such
as the exponential moving average method. Because the
results show no qualitative differences, we only present
those due to the moving window method with size as 5.

4.3. Loss rate differentiation feasibility

The PLR schemes in [3] drop a packet whenever the buf-
fer of a router is full. However, limiting dropping decisions
to such cases also limits the differentiation flexibility. PLR
schemes maintain multiple queues, one queue per a class.
When a packet is to be dropped, the schemes look for
the head-of-line packet in a specific queue. However, when
the workload is light, there may not exist such a packet in
the specific queue. Thus, there is a feasibility issue in PLR
schemes. HPPD dropper does not have this feasibility
issue. Its dropping scheme is similar to the random early
drop approach for congestion avoidance [6] and to the
BRD dropper in [8]. An arriving packet is randomly
dropped with a probability that depends on its traffic class,
its hop-count value, the buffer state, the loss requirements,
and the input traffic intensities of all traffic classes.

4.4. Differentiation overhead

A multi-queue system introduces greater implementa-
tion complexity than a single-queue system. As the work
in [8], HPPD dropper uses a single-queue system. Further-
more, our scheme drops packets on their arrivals only,
which is easy to be implemented compared to the push-
out technique used in the PLR schemes [3]. The loss rate
probability of an arriving packet is calculated according
to (7). The calculation is done in the end of each simulation
period and used for lookup in the next period. In our sim-
ulation model, the period size is the processing time of 1000
packets.

5. Performance evaluation

We built a Modular Network Simulation Tool (MoN-
STer) for the evaluation of the HPPD dropping schemes.
Its design was modelled following the design of the Click
software router [12]. The simulator consists of a number
of packet generators, hop count generators, waiting
queues, an arrival rate predictor, a hop count distribution
estimator, and a dropping probability table. The simula-
tion process was divided into a sequence of short periods
and performs packet dropping based on the dropping
probability table in each period.

As the work in [11], we assumed that hop count distribu-
tions follow the bounded Gaussian distribution. Note that
we are not making definitive claim that if hop-count distri-
butions are Gaussian or not. Instead, we are interested in
using the Gaussian distribution to study if HPPD can uti-
lize the intra-class loss differentiation to achieve congestion
mitigation by saving retransmission cost of dropped pack-
ets and further study the impact of various hop-count dis-
tributions on the performance of HPPD. As the work in
[3,8], in our simulation, the packets have the same length
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Fig. 3. The impact of HPPD intra-class loss differentiation on congestion
mitigation (n ¼ 10).
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and the packet transmission time is normalized to one time
unit. The traffic is generated from Pareto sources, one for
each class, with a shape parameter a ¼ 1:5. We note that
we have experimented with variable packet length and we
have not found any qualitative differences. Each represen-
tative result reported in this section is an average of 200
runs. In the following, we study the impact of HPPD
intra-class loss differentiation on congestion mitigation
due to retransmission saving and the impact of HPPD
inter-class loss differentiation on DiffServ provisioning with
respect to loss rate. The evaluation focuses on the short-
term high workload scenarios. Handling sudden spike or
flash crowds is an ubiquitous problem for Internet services.
Networks usually over-provision their bandwidth and
CPU to handle the spike load. However, these networks
sometimes still face unexpectedly high workloads during
unforeseeable events such as terror attacks and Mars land-
ing. Therefore, as others work in [15], this work studies the
capability of HPPD under short-term spike workloads. The
approach itself is also feasible in other workload situations
in which congestion occurs.

5.1. HPPD Intra-class loss differentiation on congestion

mitigation

Figs. 2 and 3 show the impact of the HPPD intra-class
nth-root proportional dropping scheme on congestion mit-
igation when n ¼ 3 and n ¼ 10, respectively. The experi-
ments examine the HPPD performance with 20 different
bell-shaped hop-count distributions and the uniform distri-
bution. As in [11], for the bell-shaped hop-count distribu-
tions, the lower bound and the upper bound of the
distributions are 6 and 26, respectively. The mean of the
distributions is 10, 13, 16, and 19. The variance, the girth
of the distributions, varies from 2 to 6. A hop count distri-
bution M16-V3 means that the mean is 16 and the variance
is 3. Both figures illustrate the effectiveness of the HPPD
approach because the simulated results closely agree with
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Fig. 2. The impact of HPPD intra-class loss differentiation on congestion
mitigation (n ¼ 3).
the expected results under various load conditions. More
importantly, we found that the HPPD intra-class dropping
scheme is able to reduce the overhead of retransmission
nearly 25% when n ¼ 3 and 35% when n ¼ 10, compared
to PLR droppers [3] and BRD dropper [8]. Both savings
occur with the hop count distribution M10-V6. In case of
the uniform distribution (though unrealistic), the saving
would be about 30% and 40%, respectively. The saving is
defined as ðCostUNI � CostHPPDÞ=CostUNI where CostUNI

stands for the cost of any uniform intra-class dropping
schemes such as PLR [3] and BRD [8] and the cost function
is given by (8). Note that the saving is achieved in a single
hop when it is overloaded. The impact on congestion mit-
igation will be accumulated polynomially in a route with
multiple hops. In the experiments, we also found that the
percentage of retransmission cost saving is independent
on the workload situations, but on the hop count
distributions.

We next study the impact of the mean and the variance
of the hop count distributions on the performance of
HPPD and the impact of the parameter of HPPD on con-
gestion mitigation. Fig. 4 shows the impact of the variance
of hop-count distributions on the performance of HPPD.
The experiment was conducted when the incoming work-
load was 120% of the outgoing link capacity of a network
node. Fig. 4(a) shows the loss probability of packets with
different hop counts. The mean and the variance of the
hop-count distribution are 13 and 2, respectively. We can
see that packets with hop-count values less than the mean
received higher dropping probability than those with hop-
count values greater than the mean. Meanwhile, all packets
got chances of forwarding. We next vary the variance of
the hop-count distribution to 5. Fig. 4(b) shows that as
the variance increases, the bell-shaped hop-count distribu-
tion is more flat. It means that the percentage of packets
with hop count values lower than the mean increases and
HPPD achieves more retransmission cost saving by giving
higher dropping probabilities to packet with lower hop
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Fig. 4. Impact of hop-count variance on loss probability and congestion mitigation (n ¼ 3).
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count values. Fig. 4(c) gives the correlation between the
variance of hop-count distribution and the retransmission
saving. The variance changes from 2 to 6 while the mean
is fixed to be 16. We find that the retransmission saving
increases as the variance increases. The result is explained
by the fact that as the variance increases, the bell-shape
of hop-count distribution is more flat. The percentage of
packets with low hop count values increases. This gives
the nth-root proportional dropping scheme more room to
drop packets with low hop counts and increases the
retransmission saving.

Fig. 5 shows the impact of the mean of hop-count distri-
butions on the performance of HPPD. The workload is
160%. Fig. 5(a) shows the loss probability of packets with
different hop counts. The mean and the variance of the
hop-count distribution are 16 and 5, respectively. We next
change the mean to 13. Fig. 5(b) shows that as the mean
decreases, the percentage of packets with low hop-count
values increases. Thus, HPPD achieves more retransmis-
sion cost saving by giving higher dropping probabilities
to packet with lower hop count values. Fig. 5(c) depicts
the correlation between the mean of the hop-count distri-
bution and the retransmission saving. The mean changes
from 19 to 10 while the variance is fixed to be 4. We find
that the retransmission saving increases as the mean
decreases. The result is explained by the fact that as the
mean decreases, the percentage of packets with low hop
count values increases. This gives the nth-root proportional
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Fig. 5. Impact of hop-count mean on loss pro
dropping scheme more room to drop packets with low hop
count values and increases the retransmission saving for
congestion mitigation.

Previous experiments set n to 3 for the HPPD nth-root
proportional dropping scheme. We next study the impact
of n on loss probability and congestion mitigation. Fig. 6
shows that the saving of retransmission cost increases as n

increases. The overall workload was 160% of the link capac-
ity. The mean and the variance of the hop count distribution
are 16 and 4, respectively. Fig. 7 illustrates the reason. As n

increases, the packets with hop count values less than the
mean got higher dropping probability and the packets with
hop count values less than the mean got lower dropping
probability. The retransmission saving is due to the various
degree of intra-class differentiation. Due to the property of
nth-root proportional function, the gain due to the incre-
mental of n decreases as n increases. The results show that
parameter n is a controllable parameter for congestion mit-
igation. Essentially, it is a tradeoff between congestion miti-
gation and the fairness of packet dropping. It provides great
controllability to network operators.

5.2. HPPD Inter-class loss rate differentiation on diffserv
provisioning

In the following, we study the HPPD inter-class drop-
ping scheme for proportional DiffServ provisioning with
respect to loss rate. Fig. 8 depicts the experienced loss rate
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of two classes due to the HPPD inter-class dropping
scheme under various load conditions. Without loss of gen-
erality, let Class 1 be the high priority class and Class 2 be
the low priority class. The arrival rate ratio of two classes
(k1 : k2) is fixed to be 1:1. The differentiation weight ratio
of two classes (d1 : d2) varies as 1:2, 1:4, and 1:8. The work-
load changes from 100% to 200%. The mean and the vari-
ance of the hop count distribution are 16 and 4,
respectively. The results show that HPPD can achieve pro-
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Fig. 8. HPPD two-class proportional loss rate
portional loss rate differentiation at different workload
conditions. We also note that the inter-class differentiation
of HPPD is independent on the hop count distribution,
which means that HPPD is able to achieve predictable
and consistent inter-class differentiation and mitigate con-
gestion by intra-class differentiation at the same time.

To give more sensitivity analysis of the HPPD inter-class
dropping scheme, we vary the arrival rate ratio of two clas-
ses. Fig. 9 depicts the experienced loss rate of two classes.
The overall workload is 120% of the link capacity. The
traffic of class 1 contributes 10–90% of overall workload.
The differentiation weight ratio of two classes (d1 : d2) var-
ies as 1:2, 1:4, and 1:8. It shows that HPPD dropper can
achieve proportional loss rate differentiation as well, inde-
pendent of workload variations.

We then use a three-class workload to address the sensi-
tivity of the HPPD inter-class dropping scheme to the num-
ber of classes. Note that the number of classes for DiffServ
provisioning is often limited, varying from 2 to 3
[4,8,15,23,24]. Fig. 10(a) and (b) depict the experienced loss
rate of three classes when their arrival rates are fixed to be
same. The overall workload varies from 100% to 200% of
the link capacity. The differentiation weight ratio
(d1 : d2 : d3) is set to 1:2:4 and 1:2:6. The results show that
HPPD can achieve predictable proportional loss rate differ-
entiation with three classes. We then vary the arrival rate
ratio of three classes. Fig. 10(c) depicts the experienced loss
rate of three classes. The overall workload is 150% of the
link capacity. The traffic of class 1 contributes 10–50% of
overall workload. The differentiation weight ratio of three
classes d1 : d2 : d3 is 1:2:4. It shows that HPPD can achieve
predictable proportional loss rate differentiation as well,
independent of classes’ workload variations.

Finally, we discuss the effectiveness of the HPPD
inter-class dropping scheme by investigating its differenti-
ation robustness and short-term behaviors. Fig. 11 quan-
titatively depicts the variance of the loss rate of two
classes (d1 : d2 ¼ 1 : 2) and Fig. 12 depicts that of three
classes (d1 : d2 : d3 ¼ 1 : 2 : 4). At each workload condi-
tion, the upper line is the 95th percentile; the bar is
the mean; and the lower line is the 5th percentile. The
results demonstrate the differentiation robustness of the
HPPD inter-class dropping scheme. Figs. 13 and 14 fur-
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Fig. 9. HPPD two-class proportional loss rate differentiation with different class workloads.
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ther show a short-term view of the loss rate of the two-
class case and the three-class case, respectively. The
experiment was run for 100 sampling periods for warm-
ing up and then the data was collected for 50 sampling
periods at each of three workload conditions. For the
first 50 periods, the system ran at 160% capacity. It
was then lowered to 130% capacity. At the 100th period,
the workload was increased back to 160%. A loss rate is
measured for each class in a sampling period, i.e., every
1000 packet arrivals. Obviously, the HPPD inter-class
scheme achieves consistent DiffServ results during differ-
ent sampling periods.
We performed a wide range of sensitivity analysis. We
varied the sampling period size, the number of classes,
the arrival rate ratio of the classes, and the differentiation
weight ratio of the classes. We note that we did not reach
any significantly different conclusions regarding to the con-
gestion mitigation capability and the loss rate differentia-
tion controllability of HPPD.

6. Conclusion

Packet loss rate differentiation has been an active
research topic in the DiffServ context. However, none of
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the existing packet dropping schemes for loss rate differen-
tiation considered an important issue, that is, the retrans-
mission overhead of dropped packets. In this paper, we
have designed a novel hop-count based probabilistic packet
dropper (HPPD). HPPD provides two-dimensional loss
rate differentiation. Within a traffic class, a less mature
packet, which has lower hop count, has higher probability
to be dropped than a more mature packet so as to reduce
the retransmission cost for dropped packets. We have pro-
posed a unique intra-class nth-root proportional dropping
scheme. Simulation results found that the scheme is able to
reduce retransmission cost of dropped packets significantly
on a single hop while packets with different hop counts got
forwarding chances. This saving is even more significant
considering that saving will be accumulated in a network
route with many hops. Simulation results also found that
HPPD inter-class dropping scheme is able to achieve pre-
dictable and controllable DiffServ provisioning with
respect to loss rate. The major contributions of this work
are using hop count information in making differentiated
packet dropping decisions so as to achieve congestion mit-
igation and loss rate differentiation at the same time, and
giving a controllable parameter for trading off dropping
fairness for congestion mitigation.

Our future work is to implement the HPPD two-dimen-
sional packet dropper in the Click software router and to
study the implementation overhead of the dropper and
the efficiency of the HPPD-enabled router.
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