
Balancing Accountability and Privacy in the Network

David Naylor
Carnegie Mellon University
dnaylor@cs.cmu.edu

Matthew K. Mukerjee
Carnegie Mellon University
mukerjee@cs.cmu.edu

Peter Steenkiste
Carnegie Mellon University

prs@cs.cmu.edu

ABSTRACT
Though most would agree that accountability and privacy
are both valuable, today’s Internet provides little support for
either. Previous efforts have explored ways to offer stronger
guarantees for one of the two, typically at the expense of
the other; indeed, at first glance accountability and privacy
appear mutually exclusive. At the center of the tussle is
the source address: in an accountable Internet, source ad-
dresses undeniably link packets and senders so hosts can be
punished for bad behavior. In a privacy-preserving Internet,
source addresses are hidden as much as possible.

In this paper, we argue that a balance is possible. We
introduce the Accountable and Private Internet Protocol
(APIP), which splits source addresses into two separate fields
— an accountability address and a return address — and in-
troduces independent mechanisms for managing each. Ac-
countability addresses, rather than pointing to hosts, point
to accountability delegates, which agree to vouch for packets
on their clients’ behalves, taking appropriate action when
misbehavior is reported. With accountability handled by
delegates, senders are now free to mask their return ad-
dresses; we discuss a few techniques for doing so.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

Keywords
accountability; privacy; source address

1. INTRODUCTION
Today’s Internet is caught in a tussle [13] between service

providers, who want accountability, and users, who want pri-
vacy. Each side has legitimate arguments: if senders cannot
be held accountable for their traffic (e.g., source addresses
are spoofable), stopping in-progress attacks and preventing
future ones becomes next to impossible. On the other hand,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, IL, USA.
Copyright 2014 ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626306.

there are legitimate anonymous uses of the Internet, such
as accessing medical web sites without revealing personal
medical conditions, posting to whistleblowing web sites, or
speaking out against an oppressive political regime.

At the network layer, mechanisms for providing one or
the other often boil down to either strengthening or weak-
ening source addresses. In an accountable Internet, source
addresses undeniably link packets and senders so miscreants
can be punished for bad behavior, so techniques like egress
filtering and unicast reverse path forwarding (uRPF) checks
aim to prevent spoofing. In a private Internet, senders hide
source addresses as much as possible, so services like Tor
work by masking the sender’s true source address.

We argue that striking a balance between accountability
and privacy is fundamentally difficult because the IP source
address is used both to to identify the sender (accountabil-
ity) and as a return address (privacy). In fact, the function
of the source address has evolved to be even more complex,
serving a total of five distinct roles: packet sender, return ad-
dress, error reporting (e.g., for ICMP), accountability (e.g.,
uRPF), and to calculate a flow ID (e.g., as part of the stan-
dard 5-tuple).

This paper asks the question, “What could we do if the
accountability and return address roles were separated?”
Our answer, the Accountable and Private Internet Protocol
(APIP), does just that, creating an opportunity for a more
flexible approach to balancing accountability and privacy in
the network. APIP utilizes the accountability address in a
privacy-preserving way by introducing the notion of dele-
gated accountability, in which a trusted third party vouches
for packets and fields complaints. With accountability han-
dled by delegates, senders have more freedom to hide return
addresses. We make the following contributions:

‚ An analysis of the roles of the source address in today’s
Internet.

‚ The definition of design options for an accountability
address and the accompanying mechanisms for holding
hosts accountable in a privacy-preserving way.

‚ An analysis of the impact of these design options on
the privacy-accountability tradeoff.

‚ The definition and evaluation of two end-to-end in-
stantiations of APIP.

The remainder of the paper is organized as follows. After
teasing apart the various roles of the source address (§2), §3
discusses challenges in balancing accountability and privacy.
§4 gives a high-level overview of APIP. §5 describes possible
designs for delegated accountability while §6 analyzes their
implications for privacy. §7 discusses real-world deployment

75

issues and presents two example end-to-end instantiations of
APIP. We evaluate the feasibility of APIP in §8 and finish
with a discussion of related work (§9) and conclusion (§10).

2. SOURCE ADDRESS OVERLOAD
We now investigate the roles of source addresses, since

they play a key role in the seemingly fundamental conflict
between accountability and privacy in the network. Source
addresses today attempt to fulfill at least five distinct roles:

1) Return Address — This is a source address’s most
obvious role: the receiving application uses the source
address as the destination for responses. (This is, for
example, built into TCP connection establishment.)

2) Sender Identity — Historically, source addresses
have been used as a crude (and ineffective) way of
authenticating a sender or to link multiple sessions to
a single “user”.

3) Error Reporting — If a packet encounters a
problem, the ICMP error message is directed to the
source address.

4) Flow ID — Source addresses are one component of
the 5-tuple used to classify packets into flows, both in
the network (monitoring, traffic engineering) and at
endpoints (demultiplexing).

5) Accountability — Techniques such as uRPF checks
and egress filtering can be viewed as weak
accountability mechanisms protecting against certain
types of address spoofing. Recent work offers
stronger protection than that offered by IP. For
example, AIP [4] uses cryptographic identifiers as
source addresses that can be used to verify that the
host identified really did send the packet.

Somewhat to our surprise, many proposed architectures
use source addresses for the same purposes. This includes
proposals that are very different from IP, such as architec-
tures that use paths or capabilities, rather than addresses, to
identify a destination. For instance, SCION [37] headers in-
clude AS-level paths selected jointly by the ISPs and source
and destination networks to specify how to reach the desti-
nation. However, each packet still has an AIP-style source
identifier that fulfills the above roles. Also, in ICING [28]
and capability-based architectures such as TVA [36], pack-
ets carry pre-approved router-level paths, but they also carry
traditional source and destination addresses.

To understand the impact of repurposing the source ad-
dress as an accountability address in APIP, we ask two ques-
tions about each role:

(1) Is it needed by the network? If not, it can be moved
deeper in the packet, opening up more design options and
simplifying the network header.

(2) Is it needed in every packet? If not, it could be
stored elsewhere, e.g. on the routers or end-hosts that will
use it. This simplifies the packet header, but may add com-
plexity to protocols that have to maintain the state.

Table 1 summarizes the answers to these questions. Two
high-level takeaways emerge: (1) not all roles involve the
network, and (2) some information is not needed in every
packet. The following observations are particularly relevant
to the accountability versus privacy tussle:

1) The accountability role is the network’s
primary use of source addresses. Error reporting
benefits the host, not the network. Hosts could
choose to forgo error reports for the sake of privacy
or have them sent to the accountability address. Flow
ID calculation could use the accountability address.

2) The return address role is not used by the
network at all. It could be moved deeper in the
packet, encrypted end-to-end, and/or omitted after
the first packet of a flow.

3. ACCOUNTABILITY VERSUS PRIVACY
A number of research efforts focus on improving either

accountability or sender privacy in the network, but unfor-
tunately this often comes at the price of weakening the other.
To illustrate this point, we summarize one well-known tech-
nique for each and then elaborate on the goals of this paper.

3.1 Previous Work

Accountability and Nothing But The Accountable In-
ternet Protocol (AIP) [4] is a network architecture whose
primary objective is accountability. Each host’s endpoint
identifier (EID) is the cryptographic hash of its public key,
and AIP introduces two mechanisms that use these “self-
certifying” EIDs to hold hosts accountable.

First, first-hop routers in AIP prevent spoofing by period-
ically “challenging” a host by returning the hash of a packet
it purportedly sent. Hosts maintain a cache of hashes of
recently sent packets and respond affirmatively if they find
the specified packet hash; the response is signed with the
private key corresponding to the source EID. If a challenge
elicits no response or the response has an invalid signature,
the router drops the original packet. Second, AIP proposes a
shutoff protocol: a victim under attack sends the attacking
host a shutoff packet, prompting the attacker’s NIC to install
a filter blocking the offending flow. Shutoff packets contain
the hash of an attack packet (to prove the host really sent
something to the victim) and are signed with the victim’s
private key (to prove the shutoff came from the victim).

AIP suffers from three important limitations: first, cryp-
tographically linking senders to their packets’ source ad-
dresses precludes any possibility of privacy. Second, though
bad behavior is always linkable to the misbehaving host,
AIP does not facilitate a long-term fix—the shutoff proto-
col is only a stop-gap measure. Finally, AIP requires that
well-intentioned owners install “smart NICs”that implement
the challenge and shutoff protocols, since a compromised OS
could ignore shutoffs. We draw heavily on ideas from AIP
while addressing these limitations.

Privacy and Nothing But The best available solution
for hiding a return address is using a mix net or onion rout-
ing service like Tor [12, 31, 32]. Observers in the network
only see the identity of the two onion routers on that link
in the Tor path. Of course, accountability is much more
difficult to achieve since the identity of the sender is hidden
inside the packet, behind one or more layers of encryption.
Liu et al. propose an architecture that offers a high degree
of privacy by baking Tor into the network itself [25]. How-
ever, in addition to the lack of accountability, the increased
header overhead and latency make Tor unsuitable as a de-
fault, “always-on” solution.

76

Role Where Used Layer Comments

Return Address Destination Transport Routers forward purely based on the destination address; the
return address is used only by the destination.

Sender Identity Destination Application No longer used to authenticate users, but may be used to, e.g.,
track “users” across sessions in web access logs.

Error Reporting Routers Network Destination for error messages.
Destination Network

Flow ID Destination Transport End-hosts need a way to demultiplex flows.
Routers Network Routers distinguish flows for traffic monitoring/engineering.

Accountability Routers Network In designs like AIP, routers may require a valid (challengeable)
source address.

Destination Network It must be possible to identify and shut down a malicious flow.

Table 1: The roles a source address plays and where each is used.

3.2 Goals
The examples show that the source address represents a

control point in the tussle between privacy and accountabil-
ity. Unfortunately, it is a very crude one since there seem
to be only two settings: privacy (x)or accountability. The
high level goal of this paper is to redefine the source address
so it can properly balance the accountability and privacy
concerns of providers and users.

Accountability At the network layer, by accountability
we mean that hosts cannot send traffic with impunity:
malicious behavior can be stopped and perpetrators can be
punished. Specifically, we would like our design to have the
following three properties:

1) Anyone can verify that a packet is “vouched for” —
someone is willing to take responsibility if the packet
is malicious.

2) Malicious flows can be stopped quickly.

3) Future misbehavior from malicious hosts can be
prevented (i.e., by administrative or legal action).

Privacy Our focus is on providing the ability for a sender to
hide its network address so it can hide its identity from third-
party observers in the source domain, from transit ISPs, and
(optionally—see §6) from the destination. We assume these
adversaries can observe all packets. Note that while our goal
is to make it possible to hide the sender’s address, APIP
does not specify any one particular address hiding mech-
anism. We do not consider anonymity from the operator
of the source domain itself (since it can identify the sender
based on the physical “port” through which the packet en-
tered the network).

Application-layer privacy concerns are outside the scope
of this paper, nor are we concerned about hiding a packet’s
destination; senders wishing to make their packets unlink-
able to the destination should use solutions such as Tor.
Finally, though we do not introduce new techniques for flow
anonymity, i.e., the inability of observers to link packets be-
longing to the same flow, we discuss how our solutions affect
the linkability of packets in a flow.

4. BASIC DESIGN
The Accountable and Private Internet Protocol (APIP)

separates accountability and return addresses. A ded-

Accountability: NID:HID:SID

Return: NID:HID:SID

...

Destination: NID:HID:SID

used by routers
for forwarding

used by anyone
for challenging

used by destination
for responding

used by routers
as a !ow ID

Figure 1: Packet carry a destination address (used by routers
for forwarding), an accountability address (used to report
malicious packets), and an optional return address (used by
the receiving endpoint for responding).

icated accountability address allows us to address the limi-
tations of an accountability-above-all-else approach like AIP
by introducing delegated accountability . Rather than iden-
tifying the sender, a packet’s accountability address iden-
tifies an accountability delegate, a party who is willing to
vouch for the packet. With accountability handled by dele-
gates, senders are free to mask return addresses (e.g., by
encrypting them end-to-end or using network address trans-
lation) without weakening accountability.

Addressing We think APIP is applicable to many differ-
ent network architectures, so as much as possible we avoid
making protocol-specific assumptions. To discuss source ad-
dresses generally, we adopt three conventions.

First, each packet carries at least two addresses (Figure 1):
(1) a destination address (used to forward the packet) and
(2) an accountability address (identifying a party—not nec-
essarily the sender—agreeing to take responsibility for the
packet). It may also carry a return address (denoting where
response traffic should be sent) as a separate field in the
packet. Return addresses may not be present in all pack-
ets, e.g., they may be stored with connection state on the
receiver. Also, as we discuss later, the return address may
not always be part of the network header.

Second, an address consists of three logical pieces: (1) a
network ID (NID), used to forward packets to the destina-
tion domain, (2) a host ID (HID), used within the destina-
tion domain to forward packets to the destination host, and
(3) a socket ID (SID), used at the destination host to de-
multiplex packets to sockets. We write a complete address
as NID:HID:SID. These logical IDs may be separate header

77

1

42

3

Sender

Accountability

Delegate

Receiver
5Veri er

Figure 2: High-level overview of APIP.

fields or could be combined (e.g., an IP address encodes both
an NID and an HID; the port number serves as an SID).

Finally, to simplify our description of APIP, we initially
assume that HIDs are self-certifying, as defined by AIP, to
bootstrap trust in interactions with accountability delegates.
We relax this assumption in §7.3

Life of a Packet Figure 2 traces the life of a packet through
APIP.

1 The sender sends a packet with an accountability ad-
dress identifying its accountability delegate. If a
return address is needed, it can be encrypted or oth-
erwise masked.

2 The sender“briefs”its accountability delegate about
the packet it just sent.

3 A verifier (any on-path router or the receiver) can
confirm with the accountability delegate that the
packet is a valid packet from one of the delegate’s
clients. Packets that are not vouched for are dropped.

4 If the receiver determines that packets are part of a
malicious flow, it uses the accountability address to re-
port the flow to the accountability delegate, which
stops verifying (effectively blocking) the flow and can
pursue a longer term administrative or legal solution.

5 The receiver uses the return address in the request as
the destination address in the response.

It is useful to identify the key differences between APIP
and the AIP and Tor protocols discussed in Section 3. Dele-
gated accountability offers two key benefits over AIP. First,
it dramatically improves sender privacy: only the account-
ability delegate, not the whole world, knows who sent a
packet. Second, it offers a more reliable way of dealing with
malicious flows compared to a smart NIC. Third, it offers a
clearer path to long-term resolution to bad behavior. For ex-
ample, the delegate can contact the well-intentioned owner
of a misbehaving host out-of-band (e.g., requiring them to
run anti-virus tools). While Tor provides stronger privacy
properties than APIP, by simply changing how source ad-
dresses are treated, APIP can provide sender privacy with
much lower overhead since the return address can be hid-
den from the network. Techniques for doing so (§6) are
lightweight enough to be viable options for“default on”use.

5. DELEGATING ACCOUNTABILITY
This section describes how accountability can be dele-

gated. We will assume delegates can be trusted, e.g., their
role is played by a reputable commercial company or source
domain. We discuss the problem of rogue delegates in §7.1.
APIP defines four aspects of delegate operation: the form

Symantec

Clients
Acct: Symantec

...

Dest: YouTube

(a) Without SIDs.

Symantec

Clients
Acct: Symantec:SID

2

...

Dest: YouTube

(b) Per-host SIDs.

Figure 3: Adding SIDs to accountability addresses for flow
differentiation.

of the address used to reach a delegate plus the three opera-
tions all delegates must support — the delegate “interface,”
so to speak. Delegates expose one operation to their clients:

brief(packet, clientID): Whenever a host sends a
packet, it must “brief” its delegate — if the delegate
is to vouch for the packet on behalf of the sender, it
needs to know which packets its clients actually sent.

To the outside world, accountability delegates offer two op-
erations, borrowed largely from AIP:

verify(packet): Anyone in the network can chal-
lenge a packet; its accountability delegate responds
affirmatively if the packet was sent by a valid client
and the flow has not been reported as malicious.

shutoff(packet): Given an attack packet, the victim
can report the packet to the accountability delegate;
in response, the delegate stops verifying (blocks) the
flow in question and pursues a long term solution with
the sender.

We now discuss options for constructing the accountability
address and for implementing the delegate interface.

5.1 Accountability Addresses
Accountability addresses serve two related functions. First,

the address is used to send verification requests and shutoffs
to an accountability delegate. The NID:HID portion of the
address is used to direct messages to the delegate server.
Second, routers often need to identify flows, e.g., for traffic
engineering (TE) or monitoring purposes, and today source
addresses are often part of the flow ID. The granularity of
this ID is even more important in APIP since traffic is ver-
ified (and blocked) per flow. In this section, we discuss the
implications of replacing source addresses with accountabil-
ity addresses for flow identification.

Creating Flow IDs Routers construct flow IDs using in-
formation available in the network and transport headers.
However, in APIP, if an accountability address merely points
to a delegate, packets from all clients of a particular dele-
gate will be indistinguishable, robbing routers of the abil-
ity to distinguish flows at a finer granularity than dele-
gateØdestination (Figure 3a). This may be too coarse-
grained, especially since the flow ID is used for dropping
packets from malicious flows. In effect, every flow that
shares a delegate with a malicious flow will share its fate.
(TE tends to work with coarser-grained flows, so destination
addresses alone may be sufficiently granular.)

The simplest way to support finer-grain flow IDs is to
include the delegate’s SID in the calculation, similar to the

78

Sender

Accountability

Delegate

Veri�er

Packet P

brief(P)
verify(P)

OK

1

42

3

(a) Fingerprint Collection

Sender

Accountability

Delegate

Veri�er

Packet P

verify(P)

OK

1

5

2verify(P)
3

OK
4

(b) Recursive Verification

Figure 4: Briefing Techniques

way port numbers are used today. For example, delegates
could assign a group of SIDs to each client source domain,
which it can use to define network-level flows as it sees fit (see
below). Accountability delegates with many clients would
require a large pool of SIDs to achieve fine granularity (e.g.,
at the host or TCP flow level). If the SID is not sufficient,
it is possible to add a separate flow ID field to the packet
header to improve granularity. In our discussion, we will use
the term flow ID to refer to both the SID only and SID plus
dedicated field approaches.

Controlling Flow Granularity How the flow ID is assigned
affects both privacy and the amount of collateral damage
caused when an aggregate flow containing a malicious sender
is blocked. At one extreme, a delegate could use a single flow
ID for all its customers, which provides the biggest possible
anonymity set, but may result in a lot of legitimate traf-
fic being dropped if any client sends malicious traffic. At
the other extreme, assigning senders unique flow IDs (Fig-
ure 3b), or a separate flow ID per TCP flow, allows fine grain
filtering, but allows sender/TCP flow linkability. The solu-
tion we propose is for delegates to assign each client a pool
of flow IDs which it can assign to packets based on inter-
nal policies. Delegates check that clients are using flow IDs
assigned to them as part of the verification process (§5.3).

Source Domain Accountability Address Management An
interesting alternative to senders picking a flow ID for each
packet (within boundaries set by their delegate) is to have
flow IDs assigned at the level of the source domain. For
example, individual hosts could send packets with a tradi-
tional source address. If a packet leaves the source domain,
the gateway routers replace it with an accountability address
and hide the return address (like a NAT; see § 6). This ap-
proach is especially attractive for source domains that act
as the accountability delegate for their hosts (§7.4). Cen-
tralized management simplifies managing the pool of flow
IDs, enforcing policies, and incremental deployment. The
drawback is that individual users lose control over sender
privacy.

5.2 Brief()
Accountability delegates need to know which packets their

clients have sent if they are to vouch for them when chal-
lenged with a verify(). We consider two approaches in this
section. Accountability delegates can choose any method,
possibly on a per-client basis.

Fingerprint Collection The simplest solution is for senders
to proactively send their delegates fingerprints of the packets
they send (Figure 4a). The delegate stores the fingerprints

(e.g., for 30 seconds), and when it receives a verify(), it
searches for the fingerprint and returns VERIFIED if it finds
it. For reasons explained in §5.3, a packet’s fingerprint is
actually more than just a simple hash:

F pP q “ H pKSDS || Pheader || HpPbodyqq

Here H is a cryptographically secure hash function and KSDS

is a symmetric key established when sender S signed up for
service with delegate DS . It is included in the fingerprint
to prevent observers from linking P to F pP q. Each brief
includes a client ID, a fingerprint, and a message authenti-
cation code (MAC):

Sender transmits packet and brief:

S Ñ R : P
S Ñ DS : briefpP q “ clientID || F pP q

|| MACKSDS
pclientID || F pP qq

To reduce delegate storage requirements and network over-
head, rather than sending full-sized fingerprints, hosts can
instead periodically provide their delegate with a bloom fil-
ter of the fingerprints of all packets sent since the last brief.
Accountability delegates keep the filters received in the last
thirty seconds.

Note that in either case (fingerprints or bloom filters), the
delegate can vouch for its clients’ packets without knowing
anything about their contents. Finally, if gateway routers
assign accountability addresses, they can also take responsi-
bility for briefing the delegate.

Bootstrapping Who vouches for briefs? That is, how do
senders get briefs to their delegates if the packets carrying
them cannot be verified? Clients include a special “token”
in brief packet headers (e.g., as the SID in the destination
address) proving to the delegate that the brief is from a
valid client. Since verification requests include a copy of
the unverified packet’s header (see §5.3), the delegate can
see that both the accountability and destination addresses
point at the delegate, indicating the packet is a brief, cueing
the delegate to check for the token. Delegates can use any
scheme to select tokens. One possibility is using a hash
chain based on a shared secret. Each brief uses the next
hash in the chain, preventing replays. (This ensures the brief
is from a valid client—we discuss “brief-flood” DoS attacks
from malicious clients in §7.2.)

Recursive Verification The alternative to fingerprint col-
lection is to have hosts store the fingerprints of recently sent
packets. When a delegate receives a verify(), the delegate
forwards the verification packet to the host that sent it. The
host responds “yes” or “no” to the delegate, which passes the
response on to the original challenger (Figure 4b). In this
case, brief() is a NOP. Recursive verification reduces net-
work and storage overhead, but the catch is that in order to
work each verification request must carry enough informa-
tion for the delegate to map the packet to a customer. This
impacts the flow ID granularity (§5.1): when using recursive
verification, delegate must ensure that no two clients share
a flow ID (or it must be willing to forward a verification to
multiple clients).

5.3 Verify()
Verify() is nearly identical to AIP’s anti-spoofing chal-

lenge, the difference being that an AIP challenge asks, “Is
this packet’s source address spoofed?” whereas verify()

79

asks, “Do you vouch for this packet?” In AIP, first-hop
routers periodically verify that packets purporting to be
from a particular host are not spoofed. Likewise, in APIP
routers periodically verify that flows are using valid account-
ability delegates and have not been reported for misbehav-
ior. Verified flows are added to a whitelist whose entries
expire at the end of each verification interval (e.g., 30 sec-
onds); if a flow is still active, it is re-verified. Consider a
sender S, a receiver R, and a router V (“verifier”). If V
receives a packet P from S to R and the flow S Ñ R is
not in the whitelist, V sends a verification packet to S’s
accountability delegate, DS (identified in the packet). To
avoid buffering unverified packets, V can drop P and send
an error message notifying S that P was dropped pending
verification.

The verification packet includes P ’s fingerprint plus a MAC
computed with a secret key known only to V . DS now checks
three things: (1) it has received a brief from S containing
F pP q, (2) the accountability address in P is using an SID
assigned to S, and (3) transmission from S to R has not
been blocked via a shutoff (§5.4). If everything checks out,
DS returns a copy of the verification packet signed with
its private key to V , which adds S Ñ R to its whitelist.
The protocol, below, shows both fingerprint collection (›)
and recursive verification (˛), though only one or the other
would be used in practice. (KV is a secret known only to V ;
K`

DS
{K´

DS
is the delegate’s public/private keypair; KSDS is

the symmetric key shared by S and DS .)

Sender transmits packet and brief:

S Ñ R : P
› S Ñ DS : briefpP q

Verifier sends error to sender and verification to delegate:

V Ñ S : DROPPED (VERIFYING) || F pP q
V Ñ DS : verifypP q “ Pheader || HpPbodyq

|| MACKV pPheader || HpPbodyqq

Delegate verifies packet and responds:

˛ DS Ñ S : tverifypP quKSDS

˛ S Ñ DS : tVERIFIED || verifypP quKSDS

DS Ñ V : tVERIFIED || verifypP q || K`
DS
u
K´

DS

V : add flow entry to whitelist

There are three points worth noting about this protocol.
First, D returns the original verification packet so V does
not have to keep state about pending verifications. V uses
the MAC to ensure that it originated the verification request,
preventing attackers from filling V ’s whitelist with bogus
entries by sending it verifications it never asked for.

Second, the delegate needs to know the packet’s destina-
tion address (R) so it can check if traffic S Ñ R has been
shut off. Since briefs only contain fingerprints, the delegate
does not already have this information, so the verification
request includes a copy of P ’s header. It also includes a
hash of the body so the delegate can finish computing the
fingerprint of packet being verified to check that it matches
a brief in its cache.

Third, the last line in the protocol adds the flow to the
white list, identified by its accountability address, destina-
tion address, and flow ID, as described in §5.1.

ISP Participation Though anyone can verify a packet,
APIP is most effective when routers closest to the source
perform verification. An ISP that suspects a customer/peer

might not be properly verifying its traffic can apply business
pressure or possibly dissolve peering relationships if it finds
an inordinate amount of unverified traffic. Another concern
is that domains might verify traffic with a long verification
interval (that is, after verifying a packet from a flow, the
same flow is not verified again for an extended period of
time). This allows malicious flows to do damage even if the
flow’s delegate receives a shutoff() since the flow will not
be blocked until the next verification. The impact of long
verification intervals could be mitigated if transit networks
also verify traffic (see §8.1 for expected time-to-shutoff); af-
ter a shutoff(), the filter moves toward the sender as closer
routers re-verify the flow. Also, even if routers are slow to
react, APIP still facilitates a long-term fix eventually.

5.4 Shutoff()
Today, when hosts or routers identify a malicious flow,

they can locally filter packets and work with neighboring
ISPs to stop traffic. In APIP, they can also send a shutoff()
request to the attacker’s delegate. This is particularly useful
for receivers, who should have the final say as to whether
a flow is wanted or not. The protocol differs from AIP’s
shutoff protocol in two important ways. First, shutoffs are
directed to accountability delegates, not to senders. Second
a delegate can not only block the offending flow, but it can
also pursue a long-term fix. The shutoff() protocol is shown
below (between receiver R and S’s delegate DS regarding
packet P from sender S):

Sender transmits packet and brief:

S Ñ R : P
S Ñ DS : briefpP q

Receiver sends shutoff:

RÑ DS : shutoffpP q “ tPheader || HpPbodyq

|| duration || K`
RuK´

R

Sender’s delegate verifies shutoff and takes action:

DS : check HpK`
R q ““ destpPheaderq

DS : block offending flow for duration sec

Receivers can always shut off traffic directed at them.
When the delegate receives the shutoff(), it checks that
the shutoff() was signed by the private key corresponding to
the recipient of the packet in question (so the shutoff() con-
tains both the victim’s public key and the original packet’s
header; the delegate compares the hash of the public key to
the packet’s destination address). If the verifier is a router
and the shutoff() is signed by an ISP’s key, it might also
be honored, but perhaps only with manual intervention—
if a reputable ISP says one of your clients is attacking its
network, chances are you should listen. After verifying a
shutoff(), the attacker’s delegate responds in two ways.

Short-term fix: To provide the victim immediate relief,
the delegate blocks the offending flow by ceasing to ver-
ify packets from the attacker to the victim. Routers only
save flow verifications in their whitelists temporarily; when
a router on the path from S to R next tries to verify the at-
tack flow, the delegate responds DROP_FLOW. This means the
attack could last up to a router’s verification interval—we
discuss expected shutoff time in §8.1. If delegates work with
ISPs, response time could be shortened by pushing verifi-
cation revocations from delegates to routers. Alternatively,
if we assume widespread shutoff support in NICs, delegates
could send shutoffs to directly to attackers, as in AIP.

80

Long-term fix: Since clients sign contracts with their dele-
gates, a delegate can contact the owner of misbehaving hosts
out-of-band. Since most unwanted traffic comes from bot-
nets of compromised hosts with well-intentioned owners [23],
the owner will generally fix the problem, at which point the
delegate can unblock flows from the host. If a client refuses
to comply, the delegate can terminate service or report him
to the authorities.

6. MASKING RETURN ADDRESSES
APIP separates accountability from other source address

roles, allowing senders to hide the return address from ob-
servers in the network. APIP does not define any particular
privacy mechanism, but rather enables various lightweight,
“always-on” strategies for increasing the default level of pri-
vacy for all traffic without weakening accountability. We of-
fer two examples: end-to-end return address encryption and
network address translation. Since our focus is sender-flow
unlinkability, our primary concern is the size of the sender
anonymity set from the perspective of four possible adver-
saries: the source domain, observers in the source domain,
transit networks, and the receiver (Table 2).

End-to-end Encryption Since the return address is used
only by the receiver and not by routers, a simple idea is to
encrypt it end-to-end (e.g., using IKE [18], à la IPsec); now
only the destination and accountability addresses are visible
in the network. We imagine two variants: one in which
return address encryption is a network layer standard and
can be performed end-to-end or gateway-to-gateway and one
in which the return address is moved to a higher layer (e.g.,
transport or session layer).

Of course, though the return address is encrypted in the
forward direction, it will plainly visible as the destination ad-
dress in responses; determined attackers may be able to link
the outbound and inbound traffic (e.g., with timing analy-
sis). Still, even this simple strategy offers increased privacy
against passive observers, e.g., reviewing logs from a core
ISP.

Network Address Translation Encrypting the return
address end-to-end hides it from the network, but not from
the destination. For privacy from the network and the recip-
ient, edge ISPs’ border routers could perform address trans-
lation on outbound packets’ return addresses by changing
NID:HID:SID to NID:HID’:SID’. (This can be done deter-
ministically to avoid keeping large translation tables [30].)
Note that in contrast to the encryption option, response
packets sent by the destination will not reveal the identity of
the original sender (in the destination address). The down-
side is that, in contrast to encrypted return addresses, the
anonymity set shrinks closer to the source.

Today, increased use of NAT might be a controversial
proposition, but cleaner thinking about source addresses
mitigates some of the chief arguments against it. For ex-
ample, in 2006 the entire nation of Qatar was banned from
Wikipedia when one user vandalized an article because the
country’s sole ISP uses a NAT with one external IP ad-
dress [3]; in APIP, all hosts could share one external return
address while still being held individually accountable via
the accountability address.

Second, NATs are traditionally deployed for address space
separation—the privacy they provide is a side effect [35].

This is known to cause problems for servers or P2P appli-
cations. In contrast, we suggest NATing for privacy, which
can be done selectively for outgoing connections. Incoming
connections are not affected, so servers, for example, can
publish their internal address to DNS and receive incoming
connections without any kind of hole punching. Of course,
NATing for incoming connections also has security benefits,
but this is an orthogonal issue.

Reducing Overhead Not all packets need a return address.
For connection oriented traffic, the return address needs to
be sent to the destination only once during the establishment
of the connection (and also when a mobile device switches
networks). The destination can store it and reuse it for
later packets. Doing so (1) ameliorates the header overhead
introduced by splitting accountability and return addresses
in the first place and (2) allows NATs to modify many fewer
packets.

Beyond the First Hop No matter how far a packet travels,
the sender anonymity set is still just the sender’s source
domain. Though this may be sufficient for most senders,
the NAT approach can be extended by performing address
translation at more border routers. Though core ISPs are
unlikely to do this, if the first 2–3 domains in the path do,
a packet’s sender anonymity set grows significantly before
reaching the core (and ultimately its destination).

7. IN THE REAL WORLD

7.1 Holding Delegates Accountable
Delegates have three responsibilities: protecting the pri-

vacy of their clients, verifying packets with fingerprints that
match those sent by valid clients, and dropping invalid pack-
ets. We briefly discuss how malicious or compromised dele-
gates can harm either their clients or allow their clients to
harm others.

(1) Releasing private information about clients. Delegates
can learn a lot about who their clients communicate with,
information they could use for their own benefit or reveal
to a third party. Upon discovering a leak, the client can
terminate service, find a new delegate, and potentially pur-
sue legal action for breach of contract. Note that delegates
only see packet headers, not packet contents. (An interest-
ing direction for future work is exploring anonymous briefing
schemes, e.g., based on cryptography or the use of an inter-
mediary.)

(2) Failing to verify clients’ packets. Delegates can effec-
tively perform a DoS attack on clients by failing to verify
their packets. Senders can detect this due to the excessive
number of DROPPED (VERIFYING) or DROPPED (VERIFICA-

TION FAILED) error messages they will receive from verifiers.
Again, the client can then terminate service.

(3) Verifying invalid packets. Delegates can support attacks
by verifying packets for which they did not receive a brief
from a client or which belong to flows that have been shut
off. (Such a delegate may be compromised or misconfigured
or may even be colluding with an attacker.) Victims can
detect such malicious behavior (e.g., by observing that their
shutoff requests have been ignored).

Who Can be a Delegate? The likelihood of any of the
above problems occurring depends on who can be a dele-

81

Adversary End-to-end Encryption Address Translation

Source Domain Source domain always knows a packet’s sender. Source domain always knows a packet’s sender.

Observers in
Source Domain

Other source domain customers. The sender. The sender’s address is observable
until the packet reaches the border router where
NAT is performed.

Transit Networks Starts as source domain’s customers and grows
the farther the packet travels. By the time it reaches
the core, it could have come from anywhere.

Source domain’s customers.

Receiver The sender. The receiver decrypts the return
address, which is the sender’s address. If the sender
is concerned with anonymity from the receiver,
end-to-end encryption is not a viable option.

Source domain’s customers.

Table 2: Comparison of sender anonymity set, as seen by different adversaries, for end-to-end encryption and NAT.

gate. The issue of delegate oversight is complex; given space
constraints, we can only hope to lay the groundwork for dis-
cussion and future work.

At one extreme, a single central authority could provide
some form of oversight over delegates, similar to how ICANN
accredits TLDs; verifiers would then only accept delegates
on a whitelist published by this authority. This has the
advantage that delegates can be monitored and misbehaving
delegates can be immediately removed from the whitelist,
creating an incentive for responsible delegate management.
On the other hand, vetting all delegates is a huge burden
for a single authority and the role (and power) of a single
organization in charge of such a critical function is likely to
raise political concerns.

The other extreme is a free-for-all: a host can pick any
host to be its delegate. This flexibility opens the door for
many deployment models. Besides commercial (third party)
delegates, hosts can be their own delegates (similar to AIP),
use their source domain as their delegate (§7.4), or form a
peer-to-peer delegate network, in which hosts (or domains)
vouch for one other. The critical drawback of this flexibil-
ity is weaker protection against attacks—bots in a botnet,
for example, can vouch for one another’s packets regardless
how many shutoff()s they receive. It will clearly be harder
to defend against such attacks compared to the case where
there are only a limited number of vetted delegates.

Naturally, a pragmatic solution likely falls somewhere in
between these extremes. For example, a set of well-known
commercial “delegate authorities” could emerge, similar to
today’s certificate authority infrastructure, each publishing
a delegate whitelist. Alternatively, various groups could
maintain delegate blacklists based on historical incidents,
similar to today’s security companies’ publishing malware
signatures. Individual verifiers can then decide which dele-
gates to accept, a decision that could depend on many fac-
tors, including their position in the network (tier 1 versus
edge), local regulation, historical information, or the “trust
domain” they belong to [37]. Many other forms of semi-
structured self regulation are possible.

7.2 Attacking APIP
We need to ensure that hosts cannot use APIP mecha-

nisms to undermine APIP itself; two potential such attacks
are “verification-flooding” and “brief-flooding.”

Verification-Flooding Attackers could attempt to over-
whelm an accountability delegate with bogus verification

requests—rendering it incapable of verifying honest hosts’
packets—by sending a large number of dummy packets with
accountability addresses pointing at the victim delegate. To
these bogus verifications, the delegate could respond DROP_HOST

(as opposed to DROP_FLOW). Source domains should track the
number of DROP_HOSTs their customers generate, taking ac-
tion if it is too high.

Brief-Flooding Similar to verification flooding, malicious
clients could target their own delegate by sending a flood of
briefs. This attack is tricky, since it is hard to distinguish
from an honest host that happens to send lots of packets.
Delegates can enact their own policies (e.g.: will accept 1
brief per second; must use bloom filters), which should be
agreed upon when the client initially signs up for service.

7.3 Bootstrapping Trust
We now relax our initial assumption that HIDs are self-

certifying; doing so does not break APIP, but requires us to
do a small amount of extra work in brief(), verify(), and
shutoff().

brief() Clients already encrypt brief()s using a symmetric
key established when the client registered for service, so no
change is required.

verify() Delegates use their private keys to sign verification
responses. If keys are not bound to HIDs, a PKI can be used
instead; verifiers now need to check a delegate’s certificate
before trusting a response.

shutoff() Victims sign shutoff() messages to convince the
attacker’s delegate that the shutoff truly came from the re-
cipient of the offending packet. While we think it is reason-
able to assume delegates register keys with a PKI for signing
verify()s, there are many more hosts than delegates, so here
we instead rely on verification. Upon receiving a shutoff(),
the attacker’s delegate sends a verification packet to the vic-
tim’s delegate to check that the shutoff really came from the
original packet’s recipient:

RÑ DR : briefpshutoffpP qq
DS Ñ DR : X “ verify*pshutoffq
DR Ñ DS : tVERIFIED || Xu

K´
DS

When verifying a shutoff(), the delegate needs to look in-
side the shutoff packet, at the header of the original packet
that prompted the shutoff, and check that its destination

82

1

4

2

3

6
Sender Receiver

5

SENDER’S NETWORK RECEIVER’S NETWORK

Fingerprint Cache
2cf24dba5fb0afd9c282

30e26e83b2ac51bab7e4

b9e29e1b161e58207ea1

Figure 5: Design 1: 1 Host sends packet using its own
address as the source address. 2 The ISP’s border router
saves a hash of the packet and 3 performs address transla-
tion on the source address. 4 If the packet is malicious, the
receiver sends a shutoff() to the border router, otherwise 5
it responds. 6 The border router translates the response’s
destination address back to the original sender’s address.

Design 1 Design 2

Delegate Source domain Third party
Briefing Fingerprint collect. Recursive ver.
Source Addr. Single field Separate fields
Return Addr. NAT NAT or encrypt

Table 3: Two possible instantiations of APIP.

(the victim) sent the shutoff. (We denote verify() with this
additional check verify*().)

7.4 Concrete Designs
APIP is an architecture that allows routers and destina-

tions to identify an entity that is willing to take responsibil-
ity for the packet, but properties of APIP depend on how
it is deployed. For the sake of concreteness, we now sketch
two end-to-end instantiations of APIP with very different
properties. Table 3 summarizes the two designs.

Design 1 In the first design (Figure 5), the source domain
acts as the accountability delegate for its hosts. Hosts are
not aware of APIP and send packets with traditional source
addresses. The gateway routers for the domain use address
translation to mask the return address, turning the source
address into a combined accountability address and masked
return address. They also collect packet fingerprints and re-
spond to verify() and shutoff() requests. Gateway routers
could either collectively act as a distributed accountability
delegate and keep briefs locally, or they could periodically
send briefs to a shared accountability server. This first de-
sign could be viewed as a variant of AIP, but implemented
at the source domain level instead of individual senders.

This design offers a number of advantages. First, it is very
efficient: gateway routers already naturally see all packets,
eliminating the overhead of briefing a third party. Second,
the source domain can immediately block malicious flows at
the source in response to a shutoff, whereas external dele-
gates can typically only stop flows indirectly. Third, hosts
do not need to be modified.

Finally, this first design allows for incremental deployment
of APIP over IP. Domains could implement accountability
and address translation, as described. Packets would need
to be marked to indicate whether the source domain sup-
ports APIP (e.g., by repurposing an ECN bit). Since both
return traffic and verify()s/shutoff()s would arrive at the

12

3

6
Sender

Accountability

Delegate

Receiver

5

SENDER’S NETWORK RECEIVER’S NETWORK

4
Fingerprint Cache
2cf24dba5fb0afd9c282

30e26e83b2ac51bab7e4

b9e29e1b161e58207ea1

Figure 6: Design 2: 1 Host sends packet and 2 saves
hash. 3 First-hop router sends verify() to the packet’s
accountability delegate, which 4 forwards the verification
to the host. 5 Using the accountability address, the receiver
can send a shutoff(); otherwise 6 it responds using the
return address.

domain’s border routers, verify() and shutoff() would each
be assigned a new IP protocol number so the border router
knows what to do with the packet. Since IP addresses are
not cryptographic, external keys would have to be used to
ensure the integrity of the verify() and shutoff() opera-
tions, as described in §7.3.

Design 2 The second design (Figure 6) uses a commercial
third party that offers accountability delegation as a ser-
vice (perhaps as part of a bundle with antivirus or firewall
software). In this design, senders insert both an accountabil-
ity address and a return address in the packet; the return
address can be masked either with encryption or a NAT.
Since the delegate is off-site, recursive verification is attrac-
tive: rather than regularly sending briefs, hosts save packet
hashes and the delegate challenges clients when it itself is
challenged.

One advantage of this solution is that it allows companies,
universities, or small domains to avoid the hassle of manag-
ing delegate servers themselves by outsourcing delegation.
Another advantage is that it is harder for observers in the
network to determine what source domain the sender be-
longs to. The drawback is that there is more overhead than
in the first design.

8. EVALUATION
The primary question we consider in the section is: “is

delegated accountability technically feasible?” Using a trace
of NetFlow data from the border routers of a mid-sized uni-
versity, we explore the costs of brief() and verify() and the
efficacy of shutoff(). The five minute trace was taken on
June 18, 2013 at noon and contains ten million flows. We
then present a short privacy analysis.

8.1 Delegated Accountability

Brief() Briefing the delegate incurs computational over-
head at the sender, storage overhead at the delegate, and
bandwidth overhead in the network. In §5.2 we suggested
that senders could report their traffic to their delegates by
sending a list of packet fingerprints or by sending a bloom
filter of recent fingerprints.

Computational Overhead Producing a packet fingerprint re-
quires computing two hashes; we assume that computing the
MAC of the fingerprint, in the worst case, costs one addi-

83

tional hash. Commodity CPUs can compute in the neigh-
borhood of 5–20 MH/s [1], which translates to 0.9–3.4 Gbps
(conservatively assuming 64B packets). This is more than
reasonable for endhosts; for servers sending large volumes
of traffic, we expect data centers could outsource briefing to
an in-path appliance built with ASICs—current ASIC-based
bitcoin miners perform 5–3,500 GH/s, translating to 0.9–600
Tbps.

Storage Overhead Next we consider the storage require-
ments at the delegate for saving briefs. Briefs are periodi-
cally purged from the cache; if a verify() arrives for a legit-
imate packet whose brief has been deleted, the sender must
retransmit the packet. Assuming a single delegate serves all
hosts in our trace, the first two series in Figure 7 show the
size of the brief cache for different expiration intervals as-
suming the delegate stores individual fingerprints, each a 20
byte SHA-1 hash. The remaining series consider the space
required if, instead of sending a fingerprint per packet, hosts
send a bloom filter every second for each active flow1. We
assume that hosts size each filter appropriately based on how
many packets from the flow were sent during the past sec-
ond. If briefs expire every n seconds, we report brief cache
sizes based on both the average and maximum number of
packets seen across n-second bins in our trace.

Bandwidth Overhead Figure 8 shows the bandwidth re-
quired for the same briefing schemes discussed above. Send-
ing fingerprints consumes an additional 2.5% of the original
traffic volume, which was just under 10 Gbps; the bloom fil-
ter schemes consume 0.25%–0.5%. The bloom filter results
assume a simple update scheme: every second, each host
sends a bloom filter for packets sent in each flow1 during
the last 30 seconds; when the delegate gets a new filter for
an existing flow, it replaces the old filter (using a bloom filter
alternative that supports resizing is interesting future work).
Note briefing overhead can be avoided entirely if (1) the ISP
is the accountability delegate, so border routers save hashes
directly, or (2) delegates use recursive verification (§5.2).

Verify() The magnitude of verification overhead is deter-
mined by the verification interval and flow granularity (fewer
flows means fewer verifications; in our analysis, each “flow”
is a TCP flow, so our numbers are an upper bound). There
is a tradeoff between long and short verification intervals.
The longer the interval, the more whitelist space is required
at routers to remember which flows have been verified and
the longer a malicious sender could transmit before being
shut off. On the other hand, shorter intervals mean more
work (more verify()s) for the delegate.

Computational Overhead Figure 9 shows how many ver-
ify()s per second an accountability delegate serving all the
hosts in our trace would see at various verification intervals.
A key observation here is that after 10 seconds, increasing
the verification interval does not significantly decrease veri-
fication rate at the delegate since most flows are short. This
knee suggests that 10 seconds might make a good interval
for use in practice.

In our trace, a verification interval of 10 seconds gener-
ates a maximum of 78,000 verify()s per second, each caus-

1In practice, we think hosts should send one bloom filter for
all traffic each second, not one per flow. Unfortunately, for
privacy reasons, our trace did not include local addresses, so
we could not merge flows originating from the same sender.

ing a lookup in a table with 1.5 million entries (assuming
delegates save briefs for 30 seconds) and one signature gen-
eration at the delegate. We think these numbers are rea-
sonable and leave enough headroom to comfortably han-
dle larger networks—CuckooFilter [38] achieves more than
180,000 lookups per second in a table with one billion entries
and the Ed25519 signature system [8] can perform 109,000
signatures per second on a 2010 quad-core 2.4GHz Westmere
CPU.

Storage Overhead As routers verify flows, they keep a
whitelist of verified flows so that every single packet need
not be verified. Whitelist entries expire at the end of each
verification interval, at which point the flow is re-verified.
We use our trace to estimate the size of this whitelist.

To account for network architectures with addresses sig-
nificantly larger than IP’s, we assume each address is 60
bytes—20 bytes each for the NID, HID, and SID. (Many re-
search efforts explore self-certifying IDs [6, 27, 4, 17] which
are typically the hashes of a name or public key; we choose
20 bytes since SHA-1 produces 20 byte digests.) Entries
identify flows at a host-host granularity, so each one is 120
bytes (two 60 byte addresses).

Figure 10 shows the size of the whitelist as we vary the
verification interval. For a given verification interval, we
group the flows in our trace into bins the size of that interval;
flows belong to a bin if they were active during that time
period (so a flow could belong to multiple bins). The figure
reports the whitelist size based on both the average number
of flows across bins as well as the maximum seen in any
bin. A 10 second interval requires a maximum of 94 MB of
whitelist space.

Shutoff() After receiving a shutoff(), a delegate blocks
malicious flows by ceasing to verify them. The next time
a router on the path from the attacker to the victim veri-
fies the flow, the delegate returns DROP_FLOW and the router
blocks the flow. How quickly this happens after a shutoff()
depends on how many on-path routers perform verification
and how often they verify each flow. Figure 11 shows the
expected delay before a shutoff takes effect for different veri-
fication intervals as a function of the number of participating
routers.

8.2 Privacy
How much privacy does APIP buy? If a sender uses its

source domain as a delegate, this depends on the size of
that domain. Raghavan et. al. find that, if ISPs were to
aggregate prefixes geographically, over half of the prefixes
advertised by many popular last-mile ISPs would include
more than 10 million IPs [30].

If a sender uses a third party delegate, the anonymity set
grows the farther a packet travels from the source domain.
To see how much, we use Route Views [2] data from Jan-
uary 1, 2014 to roughly estimate AS “fanout.” For each AS,
we track how many customer networks sit beneath it in the
AS hierarchy. (To be conservative, we only count an AS as
a customer if it originates a prefix. Transit networks with
no hosts do not contribute to an anonymity set.) For each
BGP announcement, we add the origin AS to its first- and
second-hop providers’ customer sets. Figure 12 shows a CDF
of first- and second-hop anonymity set sizes. Notably, 50%
of ASes originating prefixes have at least 180 first-hop “sib-
lings” and 90% have over 900 second-hop siblings. Though

84

0 20 40 60 80 100 120
Brief Expiration Interval (sec)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

B
ri

e
f

C
a
ch

e
 S

iz
e
 (

G
B

) Fingerprint (Max)

Fingerprint (Avg)

Bloom 10e-7 (Max)

Bloom 10e-7 (Avg)

Bloom 10e-3 (Max)

Bloom 10e-3 (Avg)

Figure 7: Brief cache size at delegate
vs. fingerprint expiry interval.

0 50 100 150 200 250 300 350
Time (sec)

0

50

100

150

200

250

300

350

B
ri

e
fi
n
g
 O

v
e
rh

e
a
d
 (

m
b
p
s) Fingerprints

Bloom (false pos rate: 10e-7)

Bloom (false pos rate: 10e-3)

Figure 8: Briefing bandwidth overhead.

0 20 40 60 80 100 120
Verification Interval (sec)

0

50

100

150

200

250

300

350

400

450

T
h
o
u
sa

n
d
 V

e
ri

fi
e
s

p
e
r

S
e
co

n
d

Maximum

Average

Figure 9: Verification rate at delegate
vs. flow verification interval.

0 20 40 60 80 100 120
Verification Interval (sec)

0

100

200

300

400

500

600

W
h
it

e
lis

t
S
iz

e
 (

M
B

)

Maximum

Average

Figure 10: Size of whitelist of verified
flows vs. flow verification interval.

1 2 3 4 5 6 7 8 9 10
Number of Verifying Rotuers

0

10

20

30

40

50

60

E
x
p
e
ct

e
d
 T

im
e
 t

o
 S

h
u
to

ff
 (

se
c)

120 sec verify interval

60 sec verify interval

30 sec verify interval

10 sec verify interval

Figure 11: Expected time to shutoff vs.
number of on-path verifiers.

0 5000 10000 15000 20000 25000 30000
Anonymity Set Size (# ASes)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

First hop

Second hop

Figure 12: Anonymity Set Size

drawing conclusions about AS topology based on BGP an-
nouncements is imprecise, these ballpark figures give an idea
of the anonymity benefits of delegated accountability.

9. RELATED WORK

Privacy Various techniques exist for hiding network source
addresses, including crowds [32], mixes [12], and onion rout-
ing [31]. Real-world implementations based on these ideas
include Anonymizer2 and Tor3. Liu et al. consider build-
ing onion routing into the network architecture itself [25].
NDN [20] takes a more radical approach by eliminating source
addresses altogether; data finds the sender by following“bread
crumbs” left by the request. The drawback to all of these
approaches is a complete lack of accountability; there is no
easy way to link malicious traffic with senders.

Raghavan et. al. [30] describe ISPs offering NAT for pri-
vacy as a service but uses a single source address. LAP [19]
is similar to (but more secure than) our “NAT-at-every-hop”
approach but does not consider accountability.

Accountability Techniques like ingress/egress filtering [16,
24] aim to provide some degree of accountability by reduc-
ing the prevalence of source address spoofing; more sophis-
ticated variants exist [29, 14, 21]. This class of approaches
has limitations we address: (1) source addresses are only
protected on a domain granularity, (2) filtering by itself pro-
vides no “shutoff” mechanism for misbehaving hosts who
do not send spoofed packets, and (3) it is not compati-
ble with schemes for hiding return addresses for the sake
of anonymity.

As described in §3.1, our verify() and shutoff() mecha-
nisms borrow heavily from AIP [4], which in turn based its
mechanisms on ideas presented by Shaw [34] and in AITF

2http://www.anonymizer.com/
3https://www.torproject.org/

[5]. By modifying these mechanisms to work with delegates,
we make them privacy-preserving, enable long-term resolu-
tion, and avoid relying on self-certifying IDs.

Accountability delegates are described in [7], but the pro-
tocol is costly and is not evaluated; privacy receives only
passing mention.

Balancing Accountability and Privacy The idea of
identify escrow is not new (e.g., [10]). In particular, our
notion of delegated accountability is similar in flavor to the
contractual anonymity described in RECAP [33], in which
a service provider (e.g., an online forum) offers its users
anonymity which can be broken only if they violate a pre-
arranged contract. The key difference is that RECAP pro-
vides contractual anonymity at the application layer while
we balance anonymity and accountability at the network
layer, which poses unique constraints (like requiring source
addresses to be both routable and anonymizable).

Addressing The use of addresses that consist of separate
network, host and socket IDs, creating separate identifiers
and locators, has been widely proposed [15, 26, 22]. [11, 9]
discuss the meaning of source addresses, though without our
focus on privacy and accountability.

10. CONCLUSION
This paper attempts to show that a balance between ac-

countability and privacy in the network is possible. By de-
coupling source addresses’ roles as accountability addresses
and return addresses, APIP strikes a balance between the
two seemingly incompatible goals. Delegated accountabil-
ity allows routers to verify that each packet they forward is
vouched for and allows attack victims to report the abuse
while at the same time permitting senders to hide their
return addresses. Furthermore, the changes to traditional
thinking about source addresses required to implement APIP

85

are not radical; though more exploration is clearly required,
we think the ideas presented here could be applied to the
current Internet.

Acknowledgments
Many thanks to the reviewers and to our shepherd, John
Wroclawski, for their insightful suggestions. This research
was funded in part by NSF under award number CNS-1040801
and by DoD, Air Force Office of Scientific Research, Na-
tional Defense Science and Engineering Graduate (NDSEG)
Fellowship, 32 CFR 168a.

11. REFERENCES
[1] Mining Hardware Comparison.

https://en.bitcoin.it/wiki/Mining hardware comparison.
[2] University of Oregon Route Views Project.

http://www.routeviews.org.
[3] Wikipedia qatar ban ‘temporary’. http:

//news.bbc.co.uk/2/hi/technology/6224677.stm,
Jan. 2007.

[4] D. G. Andersen, H. Balakrishnan, N. Feamster, et al.
Accountable internet protocol (AIP). SIGCOMM ’08,
pages 339–350, New York, NY, USA, 2008. ACM.

[5] K. J. Argyraki and D. R. Cheriton. Active internet
traffic filtering: Real-time response to denial-of-service
attacks. In USENIX Annual Technical Conference,
General Track, pages 135–148, 2005.

[6] T. Aura. Cryptographically Generated Addresses
(CGA). RFC 3972 (Proposed Standard), Mar. 2005.
Updated by RFCs 4581, 4982.

[7] A. Bender, N. Spring, D. Levin, and B. Bhattacharjee.
Accountability as a service. SRUTI, 7:1–6, 2007.

[8] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and
B.-Y. Yang. High-speed high-security signatures.
Journal of Cryptographic Engineering, 2(2):77–89,
2012.

[9] M. B. Braun and J. Crowcroft. SNA: Sourceless
Network Architecture. Technical Report
UCAM-CL-TR-849, University of Cambridge,
Computer Laboratory, Mar. 2014.

[10] J. Camenisch and A. Lysyanskaya. An efficient system
for non-transferable anonymous credentials with
optional anonymity revocation. In Advances in
Cryptology-EUROCRYPT 2001, pages 93–118.
Springer, 2001.

[11] C. Candolin and P. Nikander. IPv6 source addresses
considered harmful. In NordSec ’01, pages 54–68, 2001.

[12] D. Chaum. Untraceable electronic mail, return
address, and digital pseudonyms. Communications of
the ACM, 24(2):84–88, 1981.

[13] D. D. Clark, J. Wroclawski, K. R. Sollins, and
R. Braden. Tussle in cyberspace: defining tomorrow’s
internet. SIGCOMM ’02, pages 347–356, New York,
NY, USA, 2002. ACM.

[14] Z. Duan, X. Yuan, and J. Chandrashekar.
Constructing inter-domain packet filters to control ip
spoofing based on bgp updates. In INFOCOM, 2006.

[15] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. The
Locator/ID Separation Protocol (LISP). RFC 6830
(Experimental), Jan. 2013.

[16] P. Ferguson and D. Senie. Network Ingress Filtering:
Defeating Denial of Service Attacks which employ IP
Source Address Spoofing. RFC 2827 (Best Current
Practice), May 2000. Updated by RFC 3704.

[17] D. Han, A. Anand, F. Dogar, et al. XIA: efficient
support for evolvable internetworking. NSDI’12, pages

23–23, Berkeley, CA, USA, 2012. USENIX
Association.

[18] D. Harkins and D. Carrel. The Internet Key Exchange
(IKE). RFC 2409 (Proposed Standard), Nov. 1998.
Obsoleted by RFC 4306, updated by RFC 4109.

[19] H.-C. Hsiao, T.-J. Kim, A. Perrig, et al. Lap:
Lightweight anonymity and privacy. In Security and
Privacy (SP), 2012 IEEE Symposium on, pages
506–520. IEEE, 2012.

[20] V. Jacobson, D. K. Smetters, J. D. Thornton, et al.
Networking named content. CoNEXT ’09, pages 1–12,
New York, NY, USA, 2009. ACM.

[21] C. Jin, H. Wang, and K. G. Shin. Hop-count filtering:
an effective defense against spoofed ddos traffic. In
CCS ‘03, pages 30–41. ACM, 2003.

[22] V. Kafle, K. Nakauchi, and M. Inoue. Generic
identifiers for id/locator split internetworking. In
K-INGN 2008., pages 299–306, 2008.

[23] S. Kandula, D. Katabi, M. Jacob, and A. Berger.
Botz-4-sale: Surviving organized ddos attacks that
mimic flash crowds. In NSDI ‘05.

[24] T. Killalea. Recommended Internet Service Provider
Security Services and Procedures. RFC 3013 (Best
Current Practice), Nov. 2000.

[25] V. Liu, S. Han, A. Krishnamurthy, and T. Anderson.
Tor instead of ip. In HotNets ‘11.

[26] D. Meyer, L. Zhang, and K. Fall. Report from the IAB
Workshop on Routing and Addressing. RFC 4984
(Informational), Sept. 2007.

[27] R. Moskowitz and P. Nikander. Host Identity Protocol
(HIP) Architecture. RFC 4423 (Informational), May
2006.

[28] J. Naous, M. Walfish, A. Nicolosi, et al. Verifying and
enforcing network paths with icing. CoNEXT ’11,
pages 30:1–30:12, New York, NY, USA, 2011. ACM.

[29] K. Park and H. Lee. On the effectiveness of
route-based packet filtering for distributed dos attack
prevention in power-law internets. In SIGCOMM
CCR, volume 31, pages 15–26. ACM, 2001.

[30] B. Raghavan, T. Kohno, A. C. Snoeren, and
D. Wetherall. Enlisting ISPs to improve online
privacy: IP address mixing by default. PETS ’09,
pages 143–163, 2009.

[31] M. G. Reed, P. F. Syverson, and D. M. Goldschlag.
Anonymous connections and onion routing. IEEE
Journal on Selected Areas in Communications, 1998.

[32] M. K. Reiter and A. D. Rubin. Crowds: Anonymity
for web transactions. TISSEC, 1(1):66–92, 1998.

[33] E. J. Schwartz, D. Brumley, and J. M. McCune. A
contractual anonymity system. In NDSS ‘10, 2010.

[34] M. Shaw. Leveraging good intentions to reduce
unwanted network traffic. In Proc. USENIX Steps to
Reduce Unwanted Traffic on the Internet workshop,
page 8, 2006.

[35] P. Srisuresh and K. Egevang. Traditional IP Network
Address Translator (Traditional NAT). RFC 3022
(Informational), Jan. 2001.

[36] X. Yang, D. Wetherall, and T. Anderson. TVA: A
DoS-limiting network architecture. Networking,
IEEE/ACM Transactions on, 16(6):1267–1280, 2008.

[37] X. Zhang, H.-C. Hsiao, G. Hasker, et al. SCION:
Scalability, control, and isolation on next-generation
networks. In Security and Privacy 2011(SP), 2011
IEEE Symposium on, pages 212–227, 2011.

[38] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G.
Andersen. Scalable, high performance ethernet
forwarding with cuckooswitch. CoNEXT ’13, pages
97–108, New York, NY, USA, 2013. ACM.

86

