
A Global Name Service for a Highly Mobile Internetwork

Abhigyan Sharma Xiaozheng Tie Hardeep Uppal Arun Venkataramani
David Westbrook Aditya Yadav ∗

{abhigyan, xztie, hardeep, arun, westy, ayadav}@cs.umass.edu

School of Computer Science, University of Massachusetts Amherst

ABSTRACT
Mobile devices dominate the Internet today, however the
Internet rooted in its tethered origins continues to provide
poor infrastructure support for mobility. Our position is
that in order to address this problem, a key challenge that
must be addressed is the design of a massively scalable global
name service that rapidly resolves identities to network loca-
tions under high mobility. Our primary contribution is the
design, implementation, and evaluation of Auspice, a next-
generation global name service that addresses this challenge.
A key insight underlying Auspice is a demand-aware replica
placement engine that intelligently replicates name records
to provide low lookup latency, low update cost, and high
availability. We have implemented a prototype of Auspice
and compared it against several commercial managed DNS
providers as well as state-of-the-art research alternatives,
and shown that Auspice significantly outperforms both. We
demonstrate proof-of-concept that Auspice can serve as a
complete end-to-end mobility solution as well as enable novel
context-based communication primitives that generalize name-
or address-based communication in today’s Internet.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: COMPUTER-
COMMUNICATION NETWORKS—Distribtued Systems

Keywords
Mobility; distributed systems; network architecture

1. INTRODUCTION
“Mobile” has long arrived, but the Internet remains un-

moved. Today, there is roughly one cellphone per human;
the number of smartphones sold last year alone roughly
equals the number of wired hosts on the Internet [28]; and
the total traffic originated by mobiles is poised to approach
that by wired devices [18]. However, the current Internet
continues to operate as it did when dominated by tethered
hosts, simply ignoring frequent endpoint mobility.

∗Authors ordered alphabetically by last name.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, IL, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626331.

Today, an application developer can not easily initiate
communication with a smartphone even when it has a public
IP address as there is no global infrastructure support for lo-
cating it. Applications like smartphone notification systems,
playback video, or cloud storage have to develop application-
level support to enable a seamless experience for their users
even as they change addresses several times a day, or let con-
nections break (as popular VoIP apps do today). The lack
of intrinsic support for mobility means that developers are
forced to redundantly develop and maintain common-case
functionality. Furthermore, we are paying an unknowable
price in terms of long-term growth and innovation by strait-
jacketing communication initiation to be unidirectional.

Many before us have criticized the Internet architecture’s
poor support for mobility as well as multihoming [33, 8, 24,
54]. A common criticism is the Internet’s so-called confla-
tion of identity and location, i.e., the use of an IP address
both to represent the identity of an interface as well as its
network location, which is problematic for mobility (same
identity, changing locations) and multihoming (single iden-
tity, multiple locations). It is commonly accepted wisdom
that a cleaner separation of identity and location is instru-
mental to fixing these problems. However, the Internet does
separate identities (domain-names) from network locations
(IP addresses) through DNS. Most high-level programming
languages also provide syntactic sugar to connect to names
remaining oblivious to IP addresses; and techniques from a
long line of work on connection migration could be employed
to seamlessly handle mid-connection mobility.

But a key missing element from this package today is a dis-
tributed name resolution infrastructure that can scale to or-
ders of magnitude higher update rates than envisioned when
DNS was created. To appreciate the envisioned scale, con-
sider tens of billions of mobile identifiers changing network
addresses at least tens of times per day. DNS’s heavy re-
liance on TTL-based caching, a key strength recognized by
its creators, researchers, and operators alike, poses a signifi-
cant handicap by increasing update propagation delays, load
on name servers, and overall client-perceived latency. It is
not uncommon for DNS update propagation to take a day
or more, resulting in long outage times when online services
have to be moved unexpectedly, prompting cries for help
on operator forums [7, 47]. A less widely noted limitation
of DNS is its reliance on hierarchical names for scaling via
federation and its single root of trust, which constrains mo-
bile applications from selecting arbitrary application-specific
names (as elaborated in §2.2 and §3.2).

247

Our position is that seamless support for mobility requires
a logically centralized global name service that rapidly trans-
lates identities to locations irrespective of how exactly identi-
ties and locations are individually represented. Our primary
contribution is the design, implementation, and evaluation
of Auspice, a distributed system that helps address this chal-
lenge. Compared to today’s ICANN/DNS-based approach,
our approach cleanly separates name resolution from adjudi-
cation and certification issues (§3.2). Auspice is also deploy-
able as a managed DNS provider in today’s Internet; com-
pared to them, a key strength of Auspice is a demand-aware
replica placement engine that significantly reduces the time-
to-connect to mobile destinations in a cost-effective manner.
Under light load, Auspice’s demand-aware replica placement
aggressively uses available resources to massively replicate
name records, while under heavy load, it carefully controls
the number and choice of replica locations based on the read-
write patterns and pockets of high demand for each name.
We have implemented a prototype of Auspice as a geo-

distributed key-value store to serve as a flexible name res-
olution service for the current Internet as well as several
“future” Internet or endpoint architectures such as Mobili-
tyFirst[54], HIP[33], or XIA[31]. We have extensively eval-
uated Auspice using a combination of Planetlab, emulation
clusters, and Amazon EC2. Our contributions are as follows.

1. A case for a global name service as an indispensable
part of any Internetwork design with intrinsic support
for high mobility (§2).

2. Auspice, a scalable, geo-distributed, federated global
name service that significantly reduces the time-to-
connect under any given resource constraints despite
high mobility and arbitrary endpoint identifiers (§3,§4).

3. A proof-of-concept demonstration of intrinsic support
for—(i) all four types of endpoint mobility; (ii) novel
context-aware delivery primitives that generalize name-
or address-based communication—over the current In-
ternet as well as MobilityFirst [54] (§4.3).

4. Comparison against several best-of-breed managed DNS
services showing that Auspice’s demand-aware approach
significantly lowers time-to-connect and/or update cost
even for today’s (hardly mobile) domain names (§4.4).

To provide a historical perspective, until the early 80s,
the Internet relied on a system called HOSTS.TXT for name
resolution, which was simply a centrally maintained text file
distributed to all hosts. The current Internet’s distributed
DNS arose in response to the rapidly increasing file size and
distribution costs. Mockapetris and Dunlap [43] point to
TTL-based caching to reduce load and response times as a
key strength, noting that “the XEROX system [Grapevine
[51]] was then ... the most sophisticated name service in
existence, but it was not clear that its heavy use of repli-
cation, light use of caching ... were appropriate”. We have
since come a full circle, turning to active replication (§2.2) in
Auspice in order to address the challenges of mobility, a con-
cern that wasn’t particularly pressing in the 80s. Compared
to classical systems like Grapevine or ClearingHouse, Aus-
pice enables support for automated demand-aware replica
placement for arbitrary names (using several modern design
elements such as consensus, the key-value abstraction, self-
certifying names, consistent hashing, etc). Auspice, through
its support for context-aware delivery, is also a step towards

addressing some of the challenges to which Lampson alludes
on representing “descriptive names” [40].

2. CASE FOR A GLOBAL NAME SERVICE
Given the huge body of prior work specifically on mobility

as well as more broadly on Internet architecture, it is natural
to begin by asking: Is a global name resolution service crit-
ical to handling mobility if we had the luxury of refactoring
Internet naming and routing from a clean slate?

2.1 Internet mobility background
Despite a staggering diversity of proposals re-architecting

Internet naming and routing, we find that they explicitly or
implicitly embed one of three broad approaches to handling
mobility–indirection-based routing, global name-to-address res-
olution, or name-based routing–based on how they go from
the name of an endpoint to the endpoint itself.

Indirection-based routing schemes are simple as an
endpoint remains oblivious to the mobility of other end-
points. No name-to-address1 lookup is needed at connection
initiation time as a human-readable name maps to a home
address (an IP address in Mobile IP [48] or a flat identifier’s
consistent-hash location in i3 [53]) that rarely changes by
design. Mid-connection mobility, even when both endpoints
move concurrently, is seamless to endpoints. However, the
data plane pays the price for this simplicity—every data
packet must be routed via an indirection agent at the home
address, potentially causing significant routing stretch, e.g.,
two participants at a conference may in each direction need
to detour packets halfway across the world despite being
in the same room. Furthermore, indirection-based schemes
require widespread deployment of indirection agents across
different domains, posing a barrier to immediate adoption.

Global name-to-address resolution schemes rely on a
distributed service to resolve names to addresses as the first
step in connection establishment. The current Internet’s
DNS as well as a number of designs addressing the Internet’s
so-called identity-location conflation problem also need such
a resolution infrastructure, e.g., to translate a self-certifying
host identifier in HIP [33], AIP[12], XIA[31], or Mobility-
First[4]) or an identifier in LISP [8] or HAIR [24] to either an
IP address [33], a self-certifying network identifier [12, 31, 4],
or a hierarchical locator [24] that encodes routing informa-
tion. Global name-to-address resolution schemes also sub-
sume DHT-based Internet architectures such as LNA [14, 56]
as well as resolution systems like CoDoNS [49] that present
a DHT-based drop-in replacement for DNS.

Global name-to-address resolution schemes need explicit
support at endpoints to handle mid-connection mobility.
There is a general consensus [52, 13, 26] that end-to-end
connection migration, i.e., bilaterally without relying on an
external service, suffices to migrate connections efficiently
when endpoints move one at a time, but an external reso-
lution service is needed to support concurrent mobility. Al-
though the latter is seen as a rare case in most connection
migration work, it can be common in disconnection-tolerant,
mobile application scenarios, e.g., when a user closes her
laptop at home and opens it at a coffee shop to continue
watching a movie, by which time the cloud-hosted virtual
server may have been migrated for load balancing.

1We use the terms name and identifier interchangeably; like-
wise for the terms address and location.

248

Name-based routing schemes in the ideal have a tan-
talizing intellectual lure—to seamlessly handle mobility by
routing directly over names with no resolution step—but
are marred by several fundamental and practical challenges.
First, name-based routing approaches can support seamless
mobility only if routing update propagation delays are on the
order of milliseconds, a daunting challenge given that inter-
domain routing can take several minutes to converge today.
Second, theoretical results on compact routing [36] suggest
discouraging fundamental trade-offs between the size of for-
warding tables at routers and path stretch even without any
mobility or multihoming, e.g., routing over N flat identifiers
entails a prohibitive Ω(N) forwarding table size per router
in order to ensure a small constant stretch factor (≈3) com-
pared to shortest-path routing. Simulation-based studies of
flat-label routing strategies (e.g., ROFL [17]) reaffirm pes-
simistic conclusions about its scalability.
Although it may appear that the scalability limitations of

name-based routing can be alleviated by adding a hierar-
chical structure to names [29, 35, 32] (e.g., NDN-style [32]
names such as /umass/phone42/call3/frame7), frequent mo-
bility still poses a challenge as routers would have to main-
tain special forwarding entries for “displaced names”, i.e.,
names that move from their hierarchically organized names-
pace (say, from /umass to /comcast in this example) for
longest-prefix matching to work correctly. That is, high
mobility effectively makes routing directly over structured
names as hard as routing over flat names unless indirection
or a name resolution infrastructure is used, a conjecture that
has recently been empirically reinforced by Gao et al. [27].
Summary. Our position is that a global name-to-address

resolution service is critical for handling high mobility in
any network architecture as it offers the best combination
of trade-offs: (1) a constant update overhead per mobility
event to the name service, (2) a modest connection estab-
lishment overhead and rapid mid-connection mobility, (3) no
data path inflation beyond underlying policy routing, and
(4) small forwarding table sizes in conjunction with aggre-
gatable addresses (IP prefixes like today or self-certifying
network addresses [4, 31]). Perhaps the most compelling ar-
gument for global name-to-address resolution is our decades
of familiarity with DNS and the Internet; handling mobility
would be a drop-in replacement to DNS provided we address
the challenge of building a distributed system that scales to
billions of devices making many updates a day and yet re-
turns up-to-date responses within milliseconds.

2.2 Limitations of DNS
What specific design traits of DNS make it poorly suited

for mobile applications? The first two traits below limit its
scalability with respect to the rate of endpoint mobility, and
the third limits its scalability with respect to the size of the
namespace if applications were to have the luxury of using
arbitrary (but fixed) names.
(1) TTL-based caching: TTL-based caching is the single-

most important mechanism for DNS’s scalability; caching
not only helps DNS sustain essentially arbitrarily high lookup
load but also dramatically reduces client-perceived lookup
latency for cache hits. However, caching is ineffective when
TTLs are near-zero, as would have to be the case under high
mobility, causing both increased load on name servers and
higher client-perceived latencies. Caching is also less effec-
tive if lookups are distributed relatively uniformly, as could

be the case with mobile device names, unlike lookups for
today’s domain names that are highly skewed [34, 45].

(2) Static placement: Authoritative DNS servers are es-
sentially rendezvous points that allow a mobile endpoint to
inform potential correspondents of its current location(s).
In order to reduce the time-to-connect, authoritative servers
must be located close to potential correspondents. However,
authoritative server locations today are static, either close
to a mobile endpoint’s “home” location or a pre-packaged
set of geo-distributed locations provided by a managed DNS
provider. Engineering a scalable geo-distributed system that
can dynamically move object replicas in a demand-aware
manner is nontrivial and real-world examples of such sys-
tems have only recently begun to emerge [19].

(3) Hierarchical names: The hierarchical structure of DNS
names is key to leveraging federation to scale to an arbi-
trary number of names by delegating different portions of
the name space (or zones) to different organizations. For ex-
ample, root name servers today only have to maintain state
for a small number of top-level domain names. In contrast,
arbitrary or flat names, e.g., “JohnSmith3142’s watch” can
not be supported in DNS while retaining the scaling ben-
efits of federation as the root name servers would have to
maintain nonzero state, e.g., at least the authoritative name
server(s) and the DNSSEC key of a name, for essentially all
names. Our position is that the design of a general-purpose
global name service must not restrict the structure of names
as names carry application-specific semantics; in §4.3.3, we
show examples of novel context-aware communication prim-
itives that are feasible with unrestricted names.

Our approach to address the first two issues above relies on
active and demand-aware replication: (1) Active replication
significantly reduces (but does not eliminate) the reliance
on passive caching; (2) Demand-aware replication ensures
that active replicas of a name record are accessible close to
clients querying the name, so as to reduce the overall time-
to-connect. A glib but pedagogically helpful way to highlight
the difference from DNS is that, in the extreme case, our
approach can create an active replica of a name record near
every DNS local name server that stores a passively cached
copy today. Our approach addresses the third issue above
by cleanly separating resolution of names from adjudication
and certification. We explain our approach in detail next.

3. Auspice DESIGN & IMPLEMENTATION

Global&name&service&A,&IP0& B,&IP1&

B,&IP2&

1)&Pre8lookup&&
mobility&

B&

IP2&

B,&IP2&

connect(B,&IP2)&
B,&IP3&B,&IP3&

2)&Connect8Ame&
mobility&

X&
Timeout(

B&

IP3& connect(B,&IP3)&
Connec,on(established(

B,&IP4&

3)&Individual&
mobility&Connec,on(re4synchronized(

B,&IP5&A,&IP6&

4)&Simultaneous&
mobility&B,&IP5&B&

IP5& connect(B,&IP5)&
Connec,on(re4synchronized(

Timeout(

Ti
m
e4
to
4c
on

ne
ct
(

Figure 1: Four kinds of mobility—(1) pre-lookup, (2)
connect-time, (3) individual, (4) simultaneous—three
of which require a global name service.

249

Our envisioned GNS enables endpoint mobility as shown
in Figure 1. An endpoint A initiates communication with
another endpoint B by querying the GNS for B’s current ad-
dresses and connecting to one of them, thereby enabling pre-
lookup mobility. If B moves after A’s query but before before
a connection has been mutually established via a three-way
handshake (connect-time mobility), A times out and reverts
back to the GNS. After a connection has been established,
if either endpoint moves one at a time (individual mobil-
ity), it can re-synchronize the connection with a bilateral
three-way handshake without relying upon the GNS (noting
however that router-level late-binding proposals relying on a
GNS-like infrastructure have also been proposed [44, 4]). If
an endpoint moves mid-connection after the other endpoint
has moved but before it could re-synchronize the connection
(simultaneous mobility), one or both endpoint(s) eventually
query the GNS and re-synchronize the connection.

3.1 Design goals
Jo
hn

Sm
ith

21
78
:.p

ho
ne

1.
(o
r.k

ey
wo

rd
7b
as
ed

.se
ar
ch
).

TLD$
name$
service$

Auth.$
name$
service$

Root$name$service$(ICANN,$
US.$Dept.$of$Commerce)$

Managed$
authoritaBve$
DNS$service$

CerBficate$
search$
service$

Auspice$
global$name$
service$

GUID=X,.GNS=Auspice..

Domain$name$system$ Global$name$system$

3$

3$

4$

4$

Hierarchical.names.with.
federaJon.Jghtly.bound.to.
name.structure.

Arbitrary.human7readable.names.
and.flat.GUIDs.with.federaJon.by.
indirecJon.via.cerJficaJon.services.

1$

0$
Local$name$
service$

1$

Local$name$
service$

2$
Name$
cerBficaBon$
service$

Figure 2: DNS vs. GNS: Auspice can be deployed as a
managed DNS provider today (left) or as a GNS provider
that provides resolution service for its customer GUIDs
(right). Name certification services bind a human-
readable name to a GUID and its GNS provider, and
certificate search services can help index and distribute
certificates from all certification services. Solid (dotted)
lines represent frequent (infrequent) query paths for a
given mobile destination. Except for the tightly con-
trolled DNS root service, all services above are designed
to be purveyed competitively.

Much of the envisioned functionality of a GNS as above
boils down to one over-arching distributed systems chal-
lenge: any principal–endpoint or router–should get the look
and feel of a high-availability name service that is nearby (≈
few milliseconds) and rapidly returns up-to-date responses.
A more precise breakdown of goals is as follows.
(1) Time-to-connect performance: The design must

ensure low latencies for name lookups to return up-to-date
values, which determines the time to connect to a destination
when the value being queried for is an address like above.
(2) Resource cost: The design must ensure low repli-

cation cost. A naive way to minimize lookup latencies is to
replicate every name record at every possible location, how-
ever high mobility means high update rates, so the cost of
pushing each update to every replica would be prohibitive.
Worse, load hotspots can actually degrade lookup latencies.
(3) High availability: The design must ensure resilience

to node failures including outages of entire datacenters; by
consequence, it should also prevent crippling load hotspots.

(4) Security: The design must be robust to malicious
users attempting to hijack or corrupt name records. The
design must support flexible access control policies to ensure
the desired level of privacy of name records.

(5) Federation: The design must allow different name
service providers to co-exist and for users to freely choose
one or more preferred providers.

(6) Extensibility: The design must be agnostic to how
names, addresses, and resolution policies are represented by
a future Internetwork. In particular, it should support flat
names and a rich set of attributes and resolution policies for
multi-homed mobility (e.g.,“prefer WiFi to cellular”), etc.

3.2 Design overview
To address the above goals, the Auspice GNS is designed

as a massively geo-distributed key-value store. The geo-
distribution is essential to the latency and availability goals
while the key-value API enables extensibility. Each name
record in Auspice is associated with a globally unique identi-
fier (GUID) that is the record’s primary key. A name record
contains an associative array of key-value pairs, wherein each
key Ki is a string and the value Vi may be a string, a prim-
itive type, or recursively a key-value pair, as shown below.

GUID | K1, V1 | K2, V2 | · · ·
The GUID is a self-certifying identifier computed as a

compact one-way hash of a public key. Each name record
is aliased to one or more globally unique human-readable
names that are bound to the GUID by a certificate supplied
by one or more name certification service(s) (NCS). Loosely
speaking, the human-readable name is analogous to a DNS
domain name and a name record to a zone file, but with the
following important differences.

Security. As shown in Fig. 2, to initiate communica-
tion with a destination Y, an endpoint X must first obtain
a certificate of the form [JohnSmith2178:Phone1, Y, P]K−

that binds the human-readable name to the GUID Y and
its GNS provider P, and is signed by the private key K− of
an NCS that X trusts. A certificate search service (e.g., a
search engine or ISP) can help index certificates from differ-
ent NCSes, and help X find a certificate from a trusted NCS,
and even find the human-readable name based on keywords.

Federation. Unlike ICANN and root DNS servers that
respectively act as a single name adjudication authority and
root of trust for certification, our approach decentralizes
trust across different NCS providers, potentially allowing
endpoints to use quorum-based approaches to resolve con-
flicting name certificates. More importantly, our federa-
tion approach allows endpoints to select arbitrary human-
readable names and NCS providers unlike DNS that restricts
domain names to be hierarchical and federation and the
DNSSEC keychain to strictly follow the name structure. An
inevitable implication of decentralizing trust is that two end-
points can communicate securely only if they share a trusted
NCS provider, but this change we argue is preferable to and
a strict generalization of the single-root-of-trust model that
some perceive as arbitrary [10, 9].

Extensibility. Our design cleanly separates the GNS
provider’s resource-intensive responsibility of name resolu-
tion under high mobility from the slow-changing certification
process. It also allows for the GNS provider to be deployed
today as a managed authoritative DNS provider (Fig. 2)
with the DNSSEC key deriving the GUID. Finally, the key-
value store API enables an extensible name record represen-

250

North&America& Europe& Asia&

N1:&Replica/controllers&

N1:&Ac<ve&replicas&

N2:&Replica/&
controllers&

N2:&Ac<ve&replicas&

User&

Report'load'
Update'replica'
loca.ons'

First'request'

Typical'
request'

Paxos&

Paxos&

Paxos&

N
am

e&
se
rv
er
&

Figure 3: Geo-distributed name servers in Auspice.
Replica-controllers (logically separate from active
replicas) decide placement of active replicas and ac-
tive replicas handle requests from end-users. N1 is
a globally popular name and is replicated globally;
name N2 is popular in select regions and is repli-
cated in those regions.

tation. By default, each top-level key has associated read
and write ACLs that could either be a blacklist or whitelist
of GUIDs that respectively have read or write access. For ex-
ample, a name record for GUID X that helps context-aware
delivery or multihoming policies (detailed in §4.3.3) is below.
{X: {IPs:[{IP: 23.55.66.43, plan: Unlimited}, {IP:
62.44.65.75, plan: Limited}], geoloc: {[lat,long],
readWhitelist:[Y,Z]}, multihome_policy: Unlimited}}

3.3 Auspice’s geo-distributed design
Next, we explain how Auspice achieves the first three de-

sign goals. At the core of Auspice is a placement engine that
achieves the latency, cost, and availability goals by adapting
the number and locations of replicas of each name record in
accordance with (1) the lookup and update request rates for
the name, (2) the geo-distribution of requests for the name,
and (3) the aggregate request load across all names.
Figure 3 illustrates the placement engine. Each name is

associated with a fixed number, F , of replica-controllers and
a variable number of active replicas of the corresponding
name record. The name’s replica-controllers are computed
using consistent hashing to select F consecutive or other-
wise deterministic nodes along the ring onto which the hash
function maps names and nodes. The replica-controllers are
responsible only for determining the number and locations
of the active replicas, and the actives replicas are responsi-
ble for maintaining the actual name record and processing
client requests. The replica-controllers implement a repli-
cated state machine using Paxos [38] in order to maintain a
consistent view of the current set of active replicas.
A name’s replica-controllers compute its active replica lo-

cations in a demand-aware manner. This computation pro-
ceeds in epochs as follows. At creation time, the active
replicas are chosen to be physically at the same locations
as the corresponding replica-controllers. In each epoch, the
replica-controllers obtain from each active replica a summa-
rized load report that contains the request rates for that
name from different regions as seen by that replica. Here,
regions partition users into non-overlapping groups that cap-
ture locality, e.g., IP prefixes or a geographic partitioning
based on cities; and the load report is a spatial vector of

request rates as seen by the replica. The replica-controllers
aggregate these load reports to obtain a concise spatial dis-
tribution of all requests for the name.

3.3.1 Demand-aware replica placement
In each epoch, the replica-controllers use a placement al-

gorithm that takes as input the aggregated load reports and
capacity constraints at name servers to determine the num-
ber and locations of active replicas for each name so as to
minimize client-perceived latency. We have formalized this
global optimization problem as a mixed-integer program and
shown it to be computationally hard. As our focus is on
simple, practical algorithms, we defer the details of the op-
timization approach [1], using it only as a benchmark in
small-scale experiments with Auspice’s heuristic algorithm

Auspice’s placement algorithm is a simple heuristic and
can be run locally by each replica-controller. The placement
algorithm computes the number of replicas using the lookup-
to-update ratio of a name in order to limit the update cost
to within a small factor of the lookup cost. The number
of replicas is always kept more than the minimum number
needed to meet the availability objective under failures. The
location of these replicas are decided to minimize lookup
latency by placing a fraction of replicas close to pockets of
high demand for that name while placing the rest randomly
so as to balance the potentially conflicting goals of reducing
latency and balancing load among name servers.

Specifically, the placement algorithm computes the num-
ber of replicas for a name as (F + βri/wi), where ri and
wi are the lookup and update rates of name i; F is the
minimum number of replicas needed to meet the availability
goal (§3.1); and β is a replication control parameter that
is automatically determined by the system so as to trade
off latency benefits of replication against update costs given
capacity constraints as follows. In each epoch, the replica-
controllers recompute β so that the aggregate load in the
system corresponds to a preset threshold utilization fraction
µ. For simplicity of exposition, suppose read and write op-
erations impose the same load, and the total capacity across
all name servers (in reads/sec) is C. Then, β is set so that

µC =
∑

i

ri +
∑

i

(F + β
ri
wi

)wi (1)

where the right hand side represents the total load summed
across all names. The first term in the summation above is
the total read load and the second is the total write load.

Having computed β as above, replica-controllers compute
the locations of active replicas for name i as follows. Out
of the F + βri/wi total replicas, a fraction ν of replicas
are chosen based on locality, i.e., replica-controllers use the
spatial vector of load reports to select ν(F + βri/wi) name
servers that are respectively the closest to the top ν(F +
βri/wi) regions sorted by demand for name i. The remain-
ing (1 − ν)(F + βri/wi) are chosen randomly without rep-
etition. The locality-based replicas above are chosen as the
closest with respect to round-trip latency plus load-induced
latency measured locally at each name server. An earlier
design chose them based on round-trip latency alone, but
we found that adding load-induced latencies in this step (in
addition to choosing the remaining replicas randomly) en-
sures better load balance and lowers overall client-perceived
latency. Our current prototype and system experiments fix
the random perturbation knob ν to 0.5. We have since devel-
oped a slightly modified placement scheme that relieves the

251

administrator from setting ν manually, automatically bal-
ancing locality-awareness and load to ensure low latencies
[1]. Thus, an administrator need only specify F and µ based
on fault tolerance and aggressiveness of capacity utilization.

3.3.2 Client request routing
A client request is routed from an end-host to a suitable

name server as follows. The set of all name servers in an
Auspice instance is known to each member name server and
can be obtained from a well-known location. End-hosts can
either directly send requests to a name server or channel
them through a local name server like today. When a local
name server encounters a request for a name for the first
time, it uses the known set of all name servers and con-
sistent hashing to determine the replica-controllers for that
name and sends the request to the closest replica-controller.
The replica-controller returns the set of active replicas for
the name and the client resends the request to the closest
active replica. In practice, we expect replica-controllers to
be contacted infrequently as the set of active replicas can be
cached and reused until they change in some future epoch.
Network latency as well as server-load-induced latency

help determine the closest replica at a local name server.
Each local name server maintains an estimate of the round-
trip latency to all name servers using infrequent pings; an
(as yet unimplemented) optimization to reduce the overhead
of all-to-all pings is to use coordinate embedding, geo-IP, or
measurement-driven techniques [42]. To incorporate load-
induced latency, the latency estimate to a name server is
passively measured as a moving average over lookups sent
to that name server. The local name server also maintains
a timeout value based on the moving average and variance
of the estimates. If a lookup request sent to a name server
times out, the local name server infers that either the server
or network route is congested, and it multiplicatively in-
creases its latency estimate to that name server by a fixed
factor. Thus, if multiple lookups sent to a name server time
out, the estimated latency shoots up and the local name
server stops sending requests to that name server, which
effectively acts as a more agile load-balancing policy in the
request routing plane (complementing the replica placement
plane above that operates in coarser-grained epochs).

3.3.3 Consistency with static replication
As a global name-to-address resolution service, Auspice

must at least ensure this eventual consistency property: all
active replicas must eventually return the same value of the
name record and, in a single-writer scenario, this value must
be the last update made by the (only) client; “eventually”
means that there are no updates to a name record and no
replica failures for sufficiently long. Violating this property
means that a mobile client may be persistently unreachable
even though it is no longer moving (updating addresses).
With a static set of replicas, it is straightforward to sup-

port this property. A replica receiving a client update need
only record the write in a persistent manner locally, return
a commit to the client, and lazily propagate the update to
other active replicas for that record. Lazy propagation is suf-
ficient to ensure that all replicas eventually receive every up-
date committed at any replica, and a deterministic reconcil-
iation policy, e.g., as in Dynamo [21], suffices to ensure that
concurrent updates are consistently applied across all repli-
cas. Temporary divergence across replicas under failures can

be shortened by increasing durability, i.e., by recording the
update persistently at more replicas before returning a com-
mit to the client. The additional “single-writer” clause is
satisfied simply by incorporating a client-local timestamp in
the deterministic reconciliation policy.

Total write ordering. As Auspice is designed to be an
expressive name service with sophisticated attributes, it may
be useful in some scenarios to ensure that update operations
(like appending to or deleting from a list) to a name are ap-
plied in the same order by all active replicas. Ensuring a
total ordering of all updates to a name is a stronger prop-
erty than eventual consistency, calling for a state-machine
approach, which Auspice supports as an option.

To this end, active replicas for a name participate in a
Paxos instance maintained separately for each name (dis-
tinct from Paxos used by replica-controllers to compute ac-
tive replicas for that name). Each update is forwarded to the
active replica that is elected as the Paxos coordinator that,
under graceful execution, first gets a majority of replicas to
accept the update number and then broadcasts a commit.
Total write ordering of course implies that updates can make
progress only when a majority of active replicas can commu-
nicate with each other while maintaining safety (consistent
with the so-called CAP dilemma).

3.3.4 Consistency with replica reconfiguration
With a dynamic set of replicas as in Auspice, achiev-

ing eventual consistency is straightforward, as it suffices
if a replica recovering from a crash lazily propagates all
pending writes to a name to its current set of active repli-
cas as obtained from any of the consistently-hashed replica-
controllers for the name. However, satisfying the (optional)
total write order property above is nontrivial.

To this end, we have designed a two-tier reconfigurable
Paxos system that involves explicit coordination between the
consensus engines of the replica-controllers and active repli-
cas. Reconfiguration is accomplished by a replica-controller
issuing and committing a stop request that gets commit-
ted as the last update of the current active replica group.
The replica-controller subsequently initiates the next group
of active replicas that can obtain the current record value
from any member of the previous group. This design shares
similarities with Vertical Paxos [39], however we were unable
to find existing implementations or even reference systems
using similar schemes, so we had to develop it from scratch.
The details of the reconfiguration protocol are here [1].

3.3.5 Scalability: A performance-cost analysis
Cost. Auspice’s replica placement scheme (Eq. 1) is de-

signed to use a fraction µ of system-wide resources so as to
make at least F and at most M replicas of each name, where
M is the total number of name server locations. Thus, at
light load, Auspice may replicate every name at every loca-
tion, while under heavy load, it may create exactly F repli-
cas for all but the most popular names. In the common
case, a lookup involves one request and response between a
local name server and an active replica; an update involves
≈ thrice (twice) as many messages as the number of active
replicas with total write ordering (eventual) consistency.

Performance. The worst-case time-to-connect latency
for a name i depends on the lookup latency li, the update
rate wi, the worst-case update propagation latency di, i.e.,
the time for all active replicas to receive an update, and the
connect timeout T (Fig. 1), as follows [1].

252

ttci = li[1 + (ewidi − 1)(1 +
T
li
)] (2)

Thus, the time-to-connect increases with (1) the lookup
latency li that in turn improves with demand-aware replica-
tion; (2) the update rate wi and update propagation delay
di that in combination determine the likelihood of obtain-
ing a stale response, noting that the latter increases with
more aggressive replication; and (3) the connect timeout T
that is at most the default transport-layer timeout (e.g., a
few seconds for TCP) and potentially as low as the round-
trip delay between the connecting client and the destination
being connected to if the destination network is capable of
generating an “no route to host” error message.
TTLs. The above analysis implicitly assumes near-zero

TTLs. With a nonzero ttli for name i, the worst-case time-
to-connect can be approximated as [1].

ttci ≃ τi
(ri + wi + 1/ttli + riwittli)
(1 + rittli)(ri + wi + 1/ttli)

+
T ri wi

(ri + 1/ttli)(ri + wi + 1/ttli)

(3)

where τi above is ttci (with a 0 TTL) as in Eq 2. Thus, a
long TTL is meaningful only if the update rate wi is low; if
so, a carefully chosen TTL can reduce the load on the system
as well as the client-perceived time-to-connect; if not, a long
TTL can inflate the time-to-connect by the connect timeout
T (= the second term above for wi ≫ ri and high ttli).
Comparison to DNS. All of the above analyses are

applicable also to geo-replicated managed DNS providers
were they to employ Auspice’s demand-aware replication ap-
proach. The main difference between Auspice and today’s
managed DNS providers that rely on simplistic static replica
placement schemes is in the lookup latency li achieved for
any given resource cost; we evaluate this performance-cost
tradeoff extensively in our experiments (§4.2 and §4.4).

3.3.6 Implementation status
We have implemented Auspice as described in Java with

28K lines of code. We have been maintaining an alpha de-
ployment for research use for many months across eight EC2
regions. We have implemented support for two pluggable
NoSQL data stores, MongoDB (default) and Cassandra, as
persistent local stores at name servers. We do not rely on
any distributed deployment features therein as the coordi-
nation middleware is what Auspice provides.
We have developed a simple NCS as a proof of concept,

which through a web portal (http://gns.name) or a command-
line console allows a user to bind a self- or system-selected
GUID to a human-readable name that is simply an email
address, i.e., our proof-of-concept NCS is a trivial CA that
relies on email-based identity verification. Clients currently
have to use a custom Auspice developer library to perform
lookups and updates or custom socket library, msocket (§4.3),
for end-to-end mobility features. We have also developed a
simple proxy to translate between BIND and Auspice’s wire-
line protocol so as to interoperate with DNS.

4. EVALUATION
Our evaluation seeks to answer the following questions:

(1) How well does Auspice’s design meet its performance,
cost, and availability goals compared to state-of-the-art al-
ternatives under high mobility? (2) Can Auspice serve as a
complete, end-to-end solution for mobility and enable novel

communication abstractions? (3) How does Auspice’s cost-
performance tradeoff compare to best-of-breed managed DNS
services for today’s (hardly mobile) domain name workloads?

4.1 Experimental setup
Testbeds: We use geo-distributed testbeds (Amazon EC2

or Planetlab) or local emulation clusters (EC2 or a depart-
mental cluster) depending upon the experiment’s goals.

Workload: There is no real workload today of clients
querying a name service in order to communicate with mo-
bile devices frequently moving across different network ad-
dresses, both because such a name service does not exist and
mobile devices do not have publicly visible IP addresses. So
we conduct an evaluation using synthetic workloads for de-
vice names (§4.2), but to avoid second-guessing future work-
load patterns, we conduct a comprehensive sensitivity anal-
ysis against all of the relevant parameters such as the read
rate, write rate, popularity, and geo-locality of demand [1].

The following are default experimental parameters for de-
vice names. The ratio of the total number of lookups across
all devices to the total number of updates is 1:1, i.e., devices
are queried for on average as often as they change addresses.
The lookup rate of any single device name is uniformly dis-
tributed between 0.5–1.5× the average lookup rate; the up-
date rate is similarly distributed and drawn independently.

How requests are geographically distributed is clearly im-
portant for evaluating a replica placement scheme. We de-
fine the geo-locality of a name as the fraction of requests
from the top-10% of regions where the name is most pop-
ular. This parameter ranges from 0.1 (least locality) to 1
(high locality). For a device name with geo-locality of g,
a fraction g of the requests are assumed to originate from
10% of the local name servers, the first of which is picked
randomly and the rest are the ones geographically closest
to it. We pick the geo-locality g = 0.75 for device names,
i.e., the top 10% of regions in the world will account for
75% of requests, an assumption that is consistent with the
finding that communication and content access exhibits a
high country-level locality [37], and is consistent with the
measured geo-locality (below) of service names today.

In addition to device names, service names constitute a
small fraction (10%) of names and are intended to capture
domain names like today with low mobility. Their lookup
rate (or popularity) distribution and geo-distribution are
used directly from the Alexa dataset [2]. Using this dataset,
we calculated the geo-locality exhibited by the top 100K
websites to be 0.8. Updates for service names are a tiny frac-
tion (0.01%) of lookups as web services can be expected to be
queried much more often than they are moved around. The
lookup rate of service names is a third of the total number
of requests (same as the lookup or update rates of devices).

Replication schemes compared: Auspice uses the
replica placement strategy as described in §3 with the default
parameter values F = 3, µ = 0.7, ν = 0.5. We compare
Auspice against the following: (1) Random-M replicates
each name at three random locations; (2) Replicate-All
replicates all names at all locations; (3) DHT+Popularity
replicates names using consistent hashing with replication
similar to Codons[49]. The number of replicas is chosen
based on the popularity ranking of a name and the location
of replicas is decided by consistent hashing. The average
hop count in Codons’s underlying Beehive algorithm is set
so that it creates the same average number of replicas as

253

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
D

F
ac

ro
ss

 n
am

es

Median lookup latency of a name (ms)

Auspice
DHT+Popularity

Random-M
Replicate-All

(a) Lookup latencies (load = 0.3)

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8

Lo
ok

up
 la

te
nc

y
(m

s)

Load (x = 100x updates/sec, 200x lookups/sec)~

9x

5.7x

Auspice
DHT+Popularity

Random-M
ReplicateAll

(b) Lookup latency vs. load

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 u
pd

at
e

co
st

Load (x = 100x updates/sec, 200x lookups/sec)~

Auspice
DHT+Popularity

Random-M
Replicate-All

(c) Update cost vs. load

Figure 4: Auspice has up to 5.7× to 9× lower latencies than Random-M and DHT+Popularity reps. (4(b)). A load of
1 means 200 lookups/sec and 100 updates/sec per name server. Replicate-All peaks out at a load of 0.3 while Auspice
can sustain a request load of up to 8 as it carefully chooses between 3 and 80 replicas per name.

Auspice for a fair comparison. All schemes direct a lookup
to the closest available replica after the first request.

4.2 Evaluating Auspice’s replica placement
We conduct experiments in this subsection on a 16-node

(each with Xeon 5140, 4-cores, 8 GB RAM) departmen-
tal cluster, wherein each machine hosts 10 instances of ei-
ther nameservers or local nameservers so as to emulate an
80-nameserver Auspice deployment. We instrument the in-
stances so as to emulate wide-area latencies between any two
instances that correspond to 160 randomly chosen Planet-
lab nodes. We choose emulation instead of a geo-distributed
testbed in this experiment in order to obtain reproducible
results while stress-testing the load-vs.-response time scaling
behavior of various schemes given identical resources.

4.2.1 Lookup latency and update cost
How well does Auspice use available resources for repli-

cating name records? To evaluate this, we compare the
lookup latency of schemes across varying load levels. A
machine running 10 name servers receives on average 2000
lookups/sec and 1000 updates/sec at a load = 1. For each
scheme, load is increased until 2% of requests fail, where a
failed request means no response is received within 10 sec.
The experiment runs for 10 mins for each scheme and load
level. To measure steady-state behavior, both Auspice and
DHT+Popularity pre-compute the placement at the start of
the experiment based on prior knowledge of the workload.
Figure 4(a) shows the distribution of median lookup la-

tency across names at the smallest load level (load = 0.3).
Figure 4(b) shows load-vs-lookup latency curve for schemes,
where “lookup latency” refers to the mean of the median
lookup latencies of names. Figure 4(c) shows the corre-
sponding mean of the distribution of update cost across
names at varying loads; the update cost for a name is the
number of replicas times the update rate of that name.
Replicate-All gives low lookup latencies at the smallest

load level, but generates a very high update cost and can
sustain a request load of at most 0.3. This is further sup-
ported by Figure 4(c) that shows that the update cost for
Replicate-All at load = 0.4 is more than the update cost of
Auspice at load = 8. In theory, Auspice can have a capac-
ity advantage of up to N/M over Replicate-All, where N is
the total number of name servers and M is the minimum
of replicas Auspice must make for ensuring fault tolerance
(resp. 80 and 3 here). Random-M can sustain a high request
load (Fig. 4(b)) due to its low update costs, but its lookup
latencies are higher as it only creates 3 replicas randomly.

Auspice has 5.7×−9× lower latencies over Random-M and
DHT+Popularity respectively (Figure 4(b), load=1). This
is because it places a fraction of the replicas close to pockets
of high demand unlike the other two. At low to moder-
ate loads, servers have excess capacity than the minimum
needed for fault tolerance, so Auspice creates as many repli-
cas as it can without exceeding the threshold utilization level
(Eq. 1), thereby achieving low latencies for loads≤4. At
loads ≥ 4, servers exceed the threshold utilization level even
if Auspice creates the minimum number of replicas needed
for fault tolerance. This explains why Auspice and Random-
M have equal update costs for loads ≥ 4 (Figure 4(c)). Re-
ducing the number of replicas at higher loads allows Auspice
to limit the update cost and sustain a maximum request load
that is equal to Random-M.

DHT+Popularity has higher lookup latencies as it repli-
cates based on lookup popularity alone and places repli-
cas using consistent hashing without considering the geo-
distribution of demand. Further, it answers lookups from a
replica selected enroute the DHT route. Typically, the la-
tency to the selected replica is higher than the latency to
the closest replica for a name, which results in high laten-
cies. DHT+Popularity replicates 22.3% most popular names
at all locations. Lookups for these names go to the clos-
est replica and achieve low latencies; lookups for remaining
77.7% of names incur high latencies.

DHT+Popularity incurs higher update costs than Auspice
even though both schemes create nearly equal numbers of
replicas at every load level. This is because DHT+Popularity
decides the number of replicas of a name only based on its
popularity, i.e., lookup rates, while Auspice decides the num-
ber of replicas based on lookup-to-update ratio of names.
Due to its higher update costs, DHT+Popularity can not
sustain as high a request load as Auspice.

4.2.2 Update latency, update propagation delay
The client-perceived update latency, i.e., the time from

when when a client sends an update to when it receives
a confirmation. These numbers are measured from the ex-
periment in §4.2.1 for load=0.3. The median and 90th per-
centile update latency for Auspice with total write ordering
is 284ms and is comparable to other schemes. A request,
after arriving an active replica, takes four one-way network
delays (two rounds) to be committed by Paxos. The median
update latency is a few hundred milliseconds for all schemes
as it is dominated by update propagation delays.

254

 0

 100

 200

 300

 400

 500

 600

1/
10

24

1/
25

6

1/
64

1/
16 1/
4 1

Ti
m

e-
to

-c
on

ne
ct

 (m
s)

Mobility rates (updates/sec)

msocket connect time
(= 210ms 2 RTT)~~

Lookup latency (= 20ms)

Timeout
(= 157ms 1.5 RTT)~~

Mean
Model-mean

(a) E2E time-to-connect

 0

 400

 800

 1200

 1600

 0 10 20 30 40 50

Th
ro

ug
hp

ut
 (K

B/
se

c)

Time (sec)

Se
rv

er
 d

ow
n

Cl
ie

nt
 d

ow
n

Se
rv

er
 u

p
Cl

ie
nt

 u
p

Co
nn

ec
tio

n
re

su
m

es

Connection

re-synchronization

time

(b) Simultaneous mobility

 0 200 400 600 800 1000
Time (ms)

Group creation

Connect to
5 members

Message1 to
5 members

Message2 to
5 members

Message3 to
5 members

(c) Context-aware delivery

Figure 5: (a) Time-to-connect≈lookup latency for moderate mobility rates (< 1
10s) as Auspice returns up-to-

date responses w.h.p., but sharply rises thereafter (Eq. 2); (b) Simultaneous mobility recovery in ≈2 RTTs
after both endpoints resurface; (c) Context-aware delivery showing 3 messages geo-cast to 5 members.

The update propagation delay, i.e., the time from when a
client issued a write till the last replica executes the write,
is a key determiner of the time-to-connect. As shown in
§3.3.5, with eventual consistency, update propagation takes
one round, while with total write ordering, update propaga-
tion takes two rounds and 50% more messages.
The measured update propagation delay is consistent with

expectations. With eventual consistency, this delay is 154
ms, while with total write ordering, it is 292ms. Thus. the
cost of the stronger consistency provided by total write or-
dering compared to eventual is that it can increase the time-
to-connect latency by up to 2×. Note that the 2× inflation is
a worst-case estimate, i.e., it will impact the time-to-connect
latency only if a read request arrives at a replica while a write
is under propagation to that replica, as we show below.

4.3 End-to-end mobility case studies
Can Auspice serve as the basis of a complete end-to-end

mobility solution? To address this question, we have devel-
oped msocket, a user-level socket library that interoperates
with Auspice, and supports all four types of endpoint mo-
bility. The details of msocket’s design and implementation
is the subject of a separate paper [6]. Here, we use msocket
to show proof-of-concept of some of Auspice’s capabilities.

4.3.1 Time-to-connect to “moving” endpoints
We evaluate the time-to-connect to a moving destination

as a function of the mobility (or update) rate. The end-to-
end time-to-connect here is measured as the latency to look
up an up-to-date address of the destination (or the time-
to-connect as defined in §3.2) plus the time for msocket to
successfully establish a TCP connection between the client
and the mobile destination. This e2e-time-to-connect also
incorporates the impact of timeouts and retried lookups if
the client happens to have obtained a stale value (as in Fig.
1). The experiment is conducted on PlanetLab and consists
of a single msocket client and a single mobile msocket server
that is “moving” by changing its listening port number on a
remote machine, and updating the name record replicated
on three Auspice name servers accordingly. A successful
connection setup delay using msocket is takes 2 RTTs (2 ×
105 ms) [6]. As defined in Eq. 2, the values of the update
propagation latency di and the lookup latency li are 250
ms and 20 ms respectively, and the update rate wi varies
from 1/1024/s to 1/s. The timeout value (T) in our exper-

iment is dependent on the RTT between the client and the
server. If the client attempts to connect to the server on a
port which the server is not listening on, the server immedi-
ately returns an error response to the client. Specifically, the
timeout value is either 1 or 2 RTTs with equal probability
depending on whether the connection failed during the first
or the second round-trip of msocket’s connection setup. The
client sends lookups at a rate of 10/s (but this rate does not
affect the time-to-connect), and both lookups and updates
inter-arrival times are exponentially distributed.

Figure 5(a) shows the distribution of the time-to-connect
with update propagation delays entailed by eventual consis-
tency. For low-to-moderate mobility rates (< 1

64s), we find
that all time-to-connect values are close to 230 ms, of which
20ms is the lookup latency, and 210ms is msocket’s connec-
tion setup latency. The reason the client is able to obtain
the correct value upon first lookup in all cases is that the up-
date propagation latency of 250ms is much smaller than the
average inter-update interval (64s). The update propaga-
tion delay becomes a non-trivial fraction of the inter-update
interval at high mobility rates of ≈1/sec that results in 26%
of lookups returning stale values. The mean e2e-time-to-
connect increases to 302 ms for an update rate of 1/sec,
which suggests that Auspice’s time-to-connect is limited by
network propagation delays in this regime. Nevertheless,
once a connection is successfully established, individual mi-
gration can quickly resynchronize the connection in ≈two
round-trips between the client and the mobile without rely-
ing on Auspice (not shown here).

Figure 5(a) also shows that the time-to-connect as pre-
dicted by our analytical model (Eq. 2) are close to those
observed in the experiment, thereby re-affirming our design.

4.3.2 Simultaneous endpoint mobility
Figure 5(b) shows an experiment involving simultaneous

mobility. The client is an Android phone using msocket via
a WiFi interface to connect to a publicly addressable Plan-
etlab machine at time 0. The server and client shut down
their interfaces respectively around 15 and 20 sec. Subse-
quently, the server restarts its interface and starts listening
on a different port and updates Auspice accordingly. After
that, the client restarts its interface and attempts to re-
synchronize the connection. This re-synchronization time is
roughly 300ms as shown and consists of the following de-
lays. The client performs a query to Auspice to resolve the

255

 0

 30

 60

 90

 120

 150

 180

 210

 240

Lo
oku

p la
ten

cy
(m

s)

 A
usp

ice
(5

rep
lica

)

 A
usp

ice
(10

 re
plic

a)

 A
usp

ice
(15

 re
plic

a)

Ult
ra

DN
S

Figure 6: Lookup latency: Auspice with 5 replicas is
comparable to UltraDNS (16 replicas); Auspice with
15 replicas has 60% lower latency than UltraDNS.

0.1

1

10

100

Up
da

te
late

ncy
 (s

)

Au
spi

ce
(5

rep
lica

)

Au
spi

ce
(10

 re
plic

a)

Au
spi

ce
(15

 re
plic

a)

Dn
s M

ad
e E

asy

Dy
n D

NS

Ult
ra

DN
S

Figure 7: Update propagation delay: Auspice with 5
replicas is 1.0 to 24.7 secs lower than three top-tier
managed DNS service providers.

server’s GUID to its new socket address (IP, port), which
takes roughly 50ms and mostly corresponds to the round-
trip delay between the client and the Auspice nameserver.
The remaining 250ms roughly correspond to 2 RTTs of de-
lay between the client and the server that are separated by
a round-trip delay of 120ms.

4.3.3 Context-aware delivery
Next, we show a proof of concept of context-aware com-

munication, a novel communication primitive enabled by
Auspice’s extensible key-value API. Auspice allows applica-
tions to bind an msocket not only to human-readable names
or GUIDs, but also to abstract context descriptors as in
msocket.bind("[geoloc: [lat,long],radius]"). Writes
to this msocket are reliably delivered to all GUIDs in the
geo-fence created by this descriptor. Underneath the cov-
ers, msocket invokes Auspice to create on-demand a group
GUID, i.e., a GUID with a membership field consisting of a
set of member GUIDs, and obtains this member set. msocket
internally resolves each member GUID to its socket address
and establishes an msocket connection for reliably delivery.
Figure 5(c) shows an experiment involving a group cre-

ator (also the message sender) on an Android phone and
a number of potential members on PlanetLab nodes, 5 of
which fake-register their coordinates in Auspice so as to ap-
pear to be within the created geo-fence. The RTT between
the group creator and members is 125ms. The figure shows
that group creation, a single call to Auspice that returns
all member GUIDs, takes roughly 200ms. Subsequently, an
internal msocket connect to each member involves another
Auspice lookup to resolve the GUID to a socket address and
connect in parallel to all 5 members, which takes 250-280ms.
After this, the creator sends 3 short messages back-to-back
that each take roughly 1 RTT to be reliably delivered.
More details of optimizing context-aware queries in Aus-

pice, reducing membership staleness, the connection migra-
tion protocol, etc. are outside the scope of this paper [6].
This experiment seeks only to exemplify a powerful, new
communication primitive enabled by context descriptors com-
pared to strictly hierarchical DNS names, as argued in §2.2.

4.4 Auspice vs. managed DNS providers
Can demand-aware replication benefit commercial man-

aged DNS providers that largely rely on statically replicating
today’s (hardly mobile) domain names? To investigate this,
we compare Auspice against three top-tier providers, Ul-
traDNS, DynDNS, and DNSMadeEasy that offer geo-replicated
authoritative DNS services widely used by enterprises (e.g.,
Dyn provides DNS service for Twitter).

4.4.1 Lookup latency
We compare Auspice to UltraDNS for a workload of lookups

for domain names serviced by the provider. We identify
316 domain names among the top 10K Alexa websites ser-
viced by this provider, and determine the geo-distribution of
lookups for each name from their data [2]. For each name,
we measure the latency for 1000 lookups from across 100
PlanetLab nodes. We ensure that lookups are served from
the name servers maintained by the provider by request-
ing the address for a new random sub-domain name each
time, e.g, xqf4p.google.com instead of google.com, that is
unlikely to exist in a cache and requires an authoritative
lookup. Auspice name servers are deployed across a total of
80 PlanetLab locations while UltraDNS has 16 known server
locations [50]. We evaluate Auspice for three configurations
with 5, 10, and 15 replicas of a name respectively.

Figure 6 shows the lookup latencies of names for Auspice
and for UltraDNS. UltraDNS incurs a median latency of 45
ms with 16 replicas, while Auspice incurs 41 ms, 22 ms,
and 18 ms respectively with 5, 10, and 15 replicas. With 5
replicas, Auspice’s performance is comparable to UltraDNS
with one-third the replication cost. With 15 replicas, Aus-
pice incurs 60% lower latency for a comparable cost. The
comparison against the other two, Dyn and DNSMadeEasy,
is qualitatively similar [1]. Thus, Auspice’s demand-aware
replication achieves a better cost–performance tradeoff com-
pared to static replication.

4.4.2 Update propagation delay
To measure update propagation delays, we purchase DNS

service from three providers for separate domain names. All
providers replicate a name at 5 locations across US and Eu-
rope for the services we purchased. We issue address updates
for the domain name serviced by that provider and then im-
mediately start lookups to the authoritative name servers
for our domain name. These authoritative name servers can
be queried only via an anycast IP address, i.e., servers at
different locations advertise the same externally visible IP
address. Therefore, to maximize the number of provider lo-
cations queried, we send queries from 50 random PlanetLab
nodes. From each location, we periodically send queries un-
til all authoritative name server replicas return the updated
address. The update propagation latency at a node is the
time between when the node starts sending lookup to when
it receives the updated address. The latency of an update
is the the maximum update latency measured at any of the
nodes. We measure latency of 100 updates for each provider.

To measure update latencies for Auspice, we replicate
1000 names at a fixed number of PlanetLab nodes across

256

US and Europe. The number of nodes is chosen to be 5,
10, and 20 across three experiments. A client sends an up-
date to the nearest node and waits for update confirmation
messages from all replicas. The latency of an update is the
time difference between when the client sent an update and
when it received the update confirmation message from all
replicas (an upper bound on the update propagation delay).
We show the distribution of measured update latencies for
Auspice and for three managed DNS providers in Figure 7.
Auspice incurs lower update propagation latencies than

all three providers for an equal or greater number of replica
locations for names. We were unable to ascertain from Ul-
traDNS why their update latencies are an order of magni-
tude higher than network propagation delays, but this find-
ing is consistent with a recent study [50] that has shown la-
tencies of up to tens of seconds for these providers. Indeed,
some providers even distinguish themselves by advertising
shorter update propagation delays than competitors [50].

Sensitivity analyses and other results.
We have conducted a comprehensive evaluation of the sen-

sitivity of Auspice’s performance-cost trade-offs to workload
and system parameters across scales varying by several or-
ders of magnitude. These include workload parameters such
as geo-locality, read-to-write rate ratio, ratio of device-to-
service names, etc. and system parameters such as the fault-
tolerance threshold, capacity utilization, perturbation knob,
the tunable overhead of replica reconfiguration, etc. using a
combination of simulation and system experiments. These
results do not qualitatively change the findings in this paper,
and are deferred to the technical report [1].

5. RELATED WORK
Our work draws on lessons learned from an enormous

body of prior work on network architecture as well as dis-
tributed systems, as described in §1 and §2.1. We discuss
related work not covered elsewhere in the paper here.
DNS. Many have studied issues related to performance,

scalability, load balancing, or denial-of-service vulnerabili-
ties in DNS’s resolution infrastructure [46, 49, 16, 22]. Sev-
eral DHT-based alternatives have been put forward [49, 20,
45] and we compare against one representative proposal,
Codons [49]. In general, DHT-based designs are ideal for
balancing load across servers, but are less well-suited to sce-
narios with a large number of service replicas that have to
coordinate upon updates, and are at odds with scenarios re-
quiring placement of replicas close to pocket of demand. In
comparison, Auspice uses a planned placement approach.
Vu et al. describe DMap [55], an in-network DHT scheme

that is similar in spirit to Random-M as evaluated in our ex-
periments (§4) (with a more direct comparison in [1]), show-
ing that demand-aware placement can dramatically outper-
form randomized placement. A more important qualitative
distinction is that DMap ties federation to the interconnec-
tion structure between ISPs, which entails commensurate
lookup latency penalties and potential incentive mismatches
by mapping GUIDs to non-provider ISPs. In comparison,
the Auspice approach decouples the federation structure be-
tween GNS providers from that between ISPs.
Server selection. Many prior systems have addressed

the server selection problem with data or services replicated
across a wide-area network. Examples include anycast ser-
vices [25, 15, 57] to map users to the best server based on
server load or network path characteristics. These systems

as well as CDNs and cloud hosting providers share our goals
of proximate server selection and load balance given a fixed
placement of server replicas. Auspice differs in that it ad-
ditionally considers replica placement itself as a degree of
freedom in achieving latency or load balance.

Dynamic placement. We were unable to find prior
systems that automatically reconfigure the geo-distributed
replica locations of frequently mutable objects while preserv-
ing consistency (i.e., those satisfying all four italicized prop-
erties). However, reconfigurable placement has been studied
for static or slow changing content [30] or within a single
datacenter, or without replication. For example, Volley [11]
optimizes the placement of mutable data objects based on
the geo-distribution of accesses and is similar in spirit to
Auspice in this respect, however it implicitly assumes a sin-
gle replica for each object, so it does not have to worry about
high update rates or replica coordination overhead.

Auspice is related to many distributed key-value stores [5,
23, 3], most of which are optimized for distribution within,
not across, data centers. Some (e.g., Cassandra) support a
geo-distributed deployment using a fixed number of replica
sites. Spanner [19] is a geo-distributed data store that syn-
chronously replicates data (“directories”) across datacenters
with a semi-relational database abstraction. Compared to
Spanner, Auspice does not provide any guarantees on oper-
ations spanning multiple records, but unlike Spanner’s geo-
graphic placement of replicas that “administrators control”
by creating a “menu of named options”, Auspice automati-
cally reconfigures the number and placement of replicas so
as to reduce lookup latency and update cost. Furthermore,
Spanner assigns a large number of directory objects to a
much smaller number of fixed Paxos groups; Auspice sup-
ports an arbitrarily reconfigurable Paxos group per object
based on principles in recent theoretical work on reconfig-
urable consensus, e.g., Vertical Paxos [39] and the more re-
cent report on Viewstamped Replication Revisited [41].

6. CONCLUSIONS
In this paper, we presented the design, implementation,

and evaluation of Auspice, a scalable, geo-distributed, fed-
erated global name service for any Internetwork where high
mobility is the norm. The name service can resolve flexi-
ble identifiers (human-readable names, self-certifying iden-
tifiers, or arbitrary strings) to network locations or other at-
tributes that can also be defined in a flexible manner. At the
core of Auspice is a placement engine for replicating name
records to achieve low lookup latency, low update cost, and
high availability. Our evaluation shows that Auspice’s place-
ment strategy can significantly improve the performance-
cost tradeoffs struck both by commercial managed DNS ser-
vices employing simplistic replication strategies today as
well as previously proposed DHT-based replication alterna-
tives with or without high mobility. Our case studies confirm
that Auspice can form the basis of an end-to-end mobility
solution and also enable novel context-aware communication
primitives that generalize name- or address-based commu-
nication. A pre-release version of Auspice on EC2 can be
accessed through the developer portal at http://gns.name.

Acknowledgments. This research was funded in part by
CNS-1040781 and CNS-0845855. We thank the rest of the
MobilityFirst team, the paper’s past and recent reviewers,
our shepherd Ellen Zegura, Anand Seetharam, Emmanuel
Cecchet, Jim Kurose, Marvin Sirbu, and NSF-FIA meeting
participants for their feedback.

257

7. REFERENCES
[1] A Global Name Service for a Highly Mobile Internetwork.

UMass SCS Technical Report, 2013 and 2014.
https://web.cs.umass.edu/publication.

[2] Alexa Web Information Service. http://www.alexa.com.
[3] Cassandra. http://cassandra.apache.org.
[4] MobilityFirst Future Internet Architecture Project.

http://mobilityfirst.cs.umass.edu/.
[5] mongoDB. http://www.mongodb.org/.
[6] msocket: System Support for Developing Seamlessly

Mobile, Multipath, and Middlebox-Agnostic Applications.
UMass SCS Technical Report, 2014.
https://web.cs.umass.edu/publication.

[7] Server fault: DNS - Any way to force a name server to
update the record of a domain?
http://serverfault.com/questions/41018.

[8] The Locator/ID Separation Protocol (LISP). RFC 6830.
[9] ICANN Hears Concerns about Accountability, Control,

October 2008. http://www.infoworld.com/t/networking/
icann-hears-concerns-about-accountability-control-216.

[10] Debate Rages over who Should Control ICANN. Processor,
31(16), June 2009.

[11] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman,
and H. Bhogan. Volley: Automated Data Placement for
Geo-Distributed Cloud Services. In USENIX NSDI, 2010.

[12] D. G. Andersen, H. Balakrishnan, N. Feamster,
T. Koponen, D. Moon, and S. Shenker. Accountable
Internet Protocol. In ACM SIGCOMM, 2008.

[13] M. Arye, E. Nordstrom, R. Kiefer, J. Rexford, and M. J.
Freedman. A Formally-Verified Migration Protocol For
Mobile, Multi-Homed Hosts. In ICNP, 2012.

[14] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy,
S. Shenker, I. Stoica, and M. Walfish. A Layered Naming
Architecture for the Internet. In ACM SIGCOMM, 2004.

[15] S. Bhattacharjee and et al. Application-Layer Anycasting.
In IEEE INFOCOM, 1997.

[16] N. Brownlee, K. Claffy, and E. Nemeth. DNS
Measurements at a Root Server. In GLOBECOM, 2001.

[17] M. Caesar, T. Condie, and J. Kannan et al. ROFL:
Routing on Flat Labels. In ACM SIGCOMM, 2006.

[18] Cisco. Visual Networking Index: Global Mobile Data
Traffic Forecast Update, 2012-2017. http://ciscovni.com.

[19] J. C. Corbett and J. Dean et al. Spanner: Google’s
Globally Distributed Database. USENIX OSDI, 2012.

[20] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS
Using a Peer-to-Peer Lookup Service. In IPTPS, 2002.

[21] G. DeCandia and et al. Dynamo: Amazon’s Highly
Available Key-value Store. In ACM SOSP, 2007.

[22] DNSSEC. DNS Threats & Weaknesses of the Domain Name
System, 2012. http://www.dnssec.net/dns-threats.php.

[23] R. Escriva, B. Wong, and E. G. Sirer. HyperDex: A
Distributed, Searchable Key-value Store. In ACM
SIGCOMM, 2012.

[24] A. Feldmann and et al. HAIR: Hierarchical Architecture for
Internet Routing. In ReArch Workshop, 2009.

[25] M. J. Freedman, K. Lakshminarayanan, and D. Mazières.
OASIS: Anycast for Any Service. In USENIX NSDI, 2006.

[26] D. Funato, K. Yasuda, and H. Tokuda. TCP-R: TCP
mobility support for continuous operation. In ICNP, 1997.

[27] Z. Gao, A. Venkataramani, and J. F. Kurose. Towards a
quantitative comparison of location-independent network
architectures. In ACM SIGCOMM, 2014.

[28] Gartner. Sales of Android Phones to Approach One Billion
in 2014. http://www.gartner.com/newsroom/id/2665715.

[29] M. Gritter and D. R. Cheriton. An Architecture for
Content Routing Support in the Internet. In USITS, 2001.

[30] J. Gwertzman and M. Seltzer. The case for geographical
push caching. In IEEE HotOS Workshop, May 1995.

[31] D. Han, A. Anand, F. Dogar et al., B. Li, H. Lim, and
M. et al. XIA: Efficient Support for Evolvable
Internetworking. In USENIX NSDI, 2012.

[32] V. Jacobson and et al. Networking Named Content. In
ACM SIGCOMM CoNEXT, 2009.

[33] P. Jokela, P. Nikander, J. Melen, J. Ylitalo, and J. Wall.
Host Identity Protocol, Extended Abstract. In Wireless
World Research Forum, 2004.

[34] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS
Performance and the Effectiveness of Caching. IEEE/ACM
Transactions on Networking, October 2002.

[35] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy,
K. H. Kim, S. Shenker, and I. Stoica. A Data-Oriented (and
Beyond) Network Architecture. In ACM SIGCOMM, 2007.

[36] D. Krioukov and et al. On Compact Routing for the
Internet. ACM SIGCOMM CCR, 2007.

[37] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter,
a Social Network or a News Media? In WWW, 2010.

[38] L. Lamport. The Part-Time Parliament. ACM Transactions
on Compututer Systems, 16(2):133–169, May 1998.

[39] L. Lamport, D. Malkhi, and L. Zhou. Vertical Paxos and
Primary-Backup Replication. In ACM PODC, 2009.

[40] B. W. Lampson. Designing a Global Name Service. In
ACM PODC, 1986.

[41] B. Liskov and J. Cowling. Viewstamped replication
revisited. Technical Report MIT CSAIL-TR-2012-021, 2012.

[42] H. V. Madhyastha and et al. iPlane: An Information Plane
for Distributed Services. In USNIX OSDI, 2006.

[43] P. Mockapetris and K. J. Dunlap. Development of the
domain name system. ACM SIGCOMM, 1988.

[44] E. Nordstrom and et al. Serval: An End-Host Stack for
Service-Centric Networking. In USENIX NSDI, 2012.

[45] V. Pappas, D. Massey, A. Terzis, and L. Zhang. A
Comparative Study of the DNS Design with DHT-Based
Alternatives. In IEEE INFOCOM, 2006.

[46] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, and
L. Zhang. Impact of Configuration Errors on DNS
Robustness. In ACM SIGCOMM, 2004.

[47] M. Parwez and et al. DNS propagation delay: An effective
and robust solution using authoritative response from
non-authoritative server. In ICIME, 2010.

[48] C. Perkins. RFC 3220: IP Mobility Support for IPv4, 2002.
[49] V. Ramasubramanian and E. G. Sirer. The Design and

Implementation of a Next Generation Name Service for the
Internet. In ACM SIGCOMM, 2004.

[50] J. Read. Comparison and Analysis of Managed DNS
Providers, Aug 2012. Cloud Harmony Inc.

[51] M. D. Schroeder, A. D. Birrell, and R. M. Needham.
Experience with Grapevine: the Growth of a Distributed
System. ACM Trans. Comput. Syst., 1984.

[52] A. C. Snoeren and H. Balakrishnan. An End-to-End
Approach to Host Mobility. In ACM MobiCom, 2000.

[53] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet Indirection Infrastructure. In SIGCOMM, 2002.

[54] A. Venkataramani, J. Kurose, D. Raychaudhuri,
K. Nagaraja, M. Mao, and S. Banerjee. MobilityFirst: A
Mobility-Centric and Trustworthy Internet Architecture.
ACM SIGCOMM CCR, 2014.

[55] T. Vu and et al. DMap: A Shared Hosting Scheme for
Dynamic Identifier to Locator Mappings in the Global
Internet. In IEEE ICDCS, 2012.

[56] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan,
R. Morris, and S. Shenker. Middleboxes No Longer
Considered Harmful. In OSDI, 2004.

[57] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford.
DONAR: Decentralized Server Selection for Cloud Services.
In ACM SIGCOMM, 2010.

258

