Error Control Techniques

Model of a conventional signaling system

1. random errors
2. burst errors

```
Source    Encode    Channel    Decode    Sink
```

Data bits m
Check bits r
Codeword $n=m+r$

Two categories of error control techniques
1. ARQ (automatic-repeat-request)
 - buffering, error-detection-codes, acknowledgment channel, retransmission.
2. FEC (forward error control)
 - error-correction codes (put enough redundancy information for correction).

FEC is inferior to ARQ except when
1. an acknowledgment channel is not available or expensive, or, even dangerous!
 - (e.g. deep space comm. such as Voyage II)
2. the small fraction of correctable error patterns has almost all the probability weight.

Arithmetic Checksum

Error detection at the higher layer is usually done by ordinary arithmetic operations. This is simpler in software but somewhat less effective than a CRC.

Standard technique is to view packet as sequence of k numbers of n bits each, say $x_1, x_2, ..., x_k$.

Checksum is then the n bit number $x_1 + x_2 + ... + x_k$ using ordinary arithmetic with no carry.

Alternatively, checksum might be $2n$ bits; first n bits is (sum) $x_1 + x_2 + ... + x_k$ and second n bits is (sum of sum) $x_1 + 2x_2 + 3x_3 + ... + kx_k$.

Example: In TCP, $n=16$, checksum is 16 bits and one’s complement of the sum. In ISBN, the data are radix 10 digits, checksum is radix 11 digit (with 10 represented as X) and is (sum of sum of all digits)/11.
Weighted code used in ISBN number for Error Detection

Our textbook has a ISBN number 0-13-162959-X.
To check that this number is a proper ISBN number we proceed as follows:

<table>
<thead>
<tr>
<th>Number</th>
<th>SUM</th>
<th>SUM of SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>22</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>27</td>
<td>83</td>
</tr>
<tr>
<td>9</td>
<td>36</td>
<td>119</td>
</tr>
<tr>
<td>10=X</td>
<td>46</td>
<td>165=11x15</td>
</tr>
</tbody>
</table>

165 mod 11 = 0

a correct ISBN number

Coding Theory

“Coding and Information Theory”, by Richard Hamming, Prentice-Hall.
A code consists of the rule/algorith for computing check bits from data bits and for generating codewords from data bits and check bits.
The coding algorithm defines the legal or illegal codewords.
For fixed length codes,
For \(x, y \in \) the set of codewords, Hamming distance, \(\text{Hd}(x,y) \) is the no. of 1’s in \(d \), and
\(d=x\oplus y \).
The Hamming distance of a code, \(C \), is \(
\text{Hd}(C) = \min\{z \mid z = \text{Hd}(x,y) \text{ where } x, y \text{ are code-words of } C, \text{ and } x\neq y\}.
\)
To detect \(d \) (single) errors, we need a code \(C \) with \(\text{Hd}(C)=d+1 \).
To correct \(d \) errors, we need a code \(C \) with \(\text{Hd}(C)=2d+1 \).
Exercise: Prove the \(\text{Hd} \)(odd parity code) = 2.
For single error correcting code, where \(m(r) \) is the no. of data(check) bits,
How many check bits is required? Prove that \(r \) must satisfy \((m+r+1) \leq 2^r \)
Each of \(2^m \) msgs has \(n \) illegal codes at Hamming distance 1 from it.
\(\Rightarrow \) Each of \(2^m \) msgs requires \(n+1 \) bit patterns from \(2^n \) bit patterns.
\(\Rightarrow (n+1)2^m \leq 2^n \Rightarrow (m+r+1)2^m \leq 2^{m+r} \Rightarrow (m+r+1) \leq 2^r \).
For \(m=8, 8+r+1 \leq 2^r, \Rightarrow r=4 \).
Hamming’s Single Error Correcting Code (SECC)

- It can correct single bit error. Invented by Richard Hamming.
- Codewords are encoded with check bits interleaved with data bits in the following order with check bits C_0, C_1, C_2, C_3, ..., C_n in position 1, 2, 8, ..., 2^n.

<table>
<thead>
<tr>
<th>3</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_0</td>
<td>C_1</td>
<td>D_1</td>
<td>C_2</td>
<td>D_2</td>
<td>C_3</td>
<td>D_3</td>
</tr>
</tbody>
</table>

To generate the codeword,
- First line up the data bits on positions 3, 5, 6, 7, ..., 9.
- For each bit with value 1, use its bit positions in the codeword to generate binary parity bit pattern contributing to the check bits.

 - The binary bit pattern corresponds to check bit C_n...C_2C_1C_0$. Therefore 0011 pattern implies the contribution of 1 to the parity bit computation of check bits C_0 and C_1.
 - Reverse the binary bit pattern and align them beneath check bits, since in the codeword, the parity bits are lined up with C_0C_1C_2C_3... order.

For each check bit, counting the parity bit contributing to it by all data bits and generate the check bit using the even parity bit.

 - In the following example, C_0 receives 1 parity bit contributed by D_1 and another by D_4. With even number of parity bit contribution, we generate bit 0 for C_0. For C_2, only D_4 contribute one parity bit, therefore, we generate bit 1 for C_2 to make the total number of bit 1 even.
 - After check bits are generated, the codeword is sent to the receiver.

Decoding SECC
- After receiving the codeword, the receiver will set aside those check bits and recompute the check bits only based on the data bits.
- If a check bit computed by the receiver is different from the received check bit, then mark the check position with X.
- For each error check bit position, add the value $2^{(check \ bit \ position)}$ to a variable error_location. For example, in the following example, we have C_0, C_1, and C_2 error. We add error_location=$2^0+2^1+2^2=1+2+4=7$. This indicates that bit position 7 in the codeword is wrong. Let us correct it by complementing its value.
Hamming's Single Error Correcting Code

<table>
<thead>
<tr>
<th>3 5 6 7 9 10 11</th>
<th>Data bit Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_0) (C_1) (D_1) (D_2) (D_3) (D_4) (D_5) (D_6) (D_7) (D_8) (D_9) (D_{10})</td>
<td>(D_{11}) (D_{12}) (D_{13}) (D_{14}) (D_{15})</td>
</tr>
</tbody>
</table>

Hamming's Code

- \(C_0 \text{ checks positions } 1, 3, 5, 7, 9, 11, 13, 15,... \) (make it even parity.)
- \(C_1 \text{ checks positions } 2, 3, 6, 7, 10, 11, 14, 15,... \)
- \(C_2 \text{ checks positions } 4, 5, 6, 7, 12, 13, 14, 15,... \)
- \(C_3 \text{ checks positions } 8, 9, 10, 11, 12, 13, 14, 15, 24, 25,... \)

Example: Encode the message 'U'=1010101.

- **Data bits:** 1010101
- **Encode:**
 - Check bits using even parity
 - \(D_1 \text{ is 1 in position 3 } \Rightarrow \text{ contribute } 0 \ 0 \ 1 \ 1 \)
 - \(D_4 \text{ is 1 in position 7 } \Rightarrow \text{ contribute } 0 \ 1 \ 0 \ 1 \)
 - \(D_7 \text{ is 1 in position 11 } \Rightarrow \text{ contribute } 1 \ 0 \ 1 \ 1 \)
- **Encoded message:** 1011100100101

Receive:

- **Code received:** 1111000100101
- **Data bits received:** 1000101
- **Regenerate check bits:**
 - \(D_1 \text{ is 1 in position 3 } \Rightarrow \text{ contribute } 0 \ 0 \ 1 \ 1 \)
 - \(D_4 \text{ is 1 in position 5 } \Rightarrow \text{ contribute } 0 \ 1 \ 0 \ 1 \)
 - \(D_7 \text{ is 1 in position 11 } \Rightarrow \text{ contribute } 1 \ 0 \ 1 \ 1 \)
- **Corrected message:** 1010101

ASCII code: a

Exercise: Illustrate how the receiver corrects bit 6 error in a Hamming code of ‘U’?

Exercise on Hamming Code

Illustrate how the receiver corrects bit 6 error in the Hamming code of ‘U’=1010101.

- **Data bits:** 1010101
- **Encode:**
 - Check bits using even parity
 - \(D_1 \text{ is 1 in position 3 } \Rightarrow \text{ contribute } 0 \ 0 \ 1 \ 1 \)
 - \(D_4 \text{ is 1 in position 7 } \Rightarrow \text{ contribute } 0 \ 1 \ 0 \ 1 \)
- **Encoded message:** 1011100100101

Receive:

- **Code received:** 1111000100101
- **Data bits received:** 1000101
- **Regenerate check bits:**
 - \(D_1 \text{ is 1 in position 3 } \Rightarrow \text{ contribute } 0 \ 0 \ 1 \ 1 \)
 - \(D_4 \text{ is 1 in position 5 } \Rightarrow \text{ contribute } 0 \ 1 \ 0 \ 1 \)
 - \(D_7 \text{ is 1 in position 11 } \Rightarrow \text{ contribute } 1 \ 0 \ 1 \ 1 \)
- **Corrected message:** 1010101

ASCII code: a
Burst Error Correction

Arrange k Hamming codewords in a matrix

```
  0 0 1 1 0 0 1 0 0 0
  1 0 1 1 0 0 1 0 0 1
  0 0 1 1 0 0 1 0 0 0
```

Use $k*r$ check bits to correct a single burst error of length k.

Trade-off is the delay increases from n/C to $k*n/C$ where C is the link capacity.

ECC vs. EDC

For error rate=10^{-6}, 1000-bit data per block, and a msg=1000 blocks is to be sent, use odd parity code (EDC),

- Msg=10^6 bits \Rightarrow only one bit error \Rightarrow only one error block needs retransmit
- \Rightarrow the overhead is $(1001+1000*1)/1001*1001 \approx 0.002$;

use ECC,

- $1000+r+1 \leq 2^r \Rightarrow r=10$ \Rightarrow each codeword has 1010 bits,
- the overhead is $10/1010 \approx 0.0099$.

Polynomial Code, Cyclic Redundancy (CRC) Code

Polynomial Code, also called CRC code, is a class of Error Detecting Codes, it uses polynomial arithmetic to calculate the check bits.

A bit string can be represented as a polynomial with coefficient 0 or 1.

$110001 \Rightarrow M(x) = x^5 + x^4 + 1$, degree of $M(x) = 5$.

$x^4M(x)=x^9 + x^8 + x^4 \Rightarrow 1100010000$ multiply x^4 is equivalent to “logical shift” $M(x)$ to left by 4 bit.

Polynomial arithmetic:

```
  10011011
+ 11001010
  01010001
```

+ and - are same xor operation; no carry-over \Rightarrow remainder

It sends checksumed code (frame) $T(x)=x^rM(x)-(x^rM(x)\%G(x))$ where $M(x)$ is the msg and $G(x)$ is the generator polynomial. $T(x)$ is divisible by $G(x)$. $G(x)$ has degree of r.

Assume that $T(x)+E(x)$ is received, here $E(x)$ represents the error bits,

- If $T(x)+E(x)$ is not divisible by $G(x)$, then error is detected.
- If $T(x)+E(x)$ is divisible by $G(x)$, then
 - case 1. $E(x)=0$, no error.
 - case 2. $E(x)!=0$, and $E(x)$ is divisible by $G(x)$. What are these $E(x)$s?
Exercise on CRC code

Assume we use generator polynomial \(G(x) = x^4 + x + 1 \) for computing the checksum of a frame.

a) Given data=11111111, what is the checksum?

b) Transmission frame \(T(x) = 111111110100 \)

c) If not bit was corrupted, the Receiver receives \(T(x) \)

d) Receiver performs \(T(x)/G(x) \) and remainder =0 (Shown in the middle).
 That indicates no error.

c2) Assume bit 5 errors, receiving frame \(R(x) = 111101110100 \)

d2) The Receiver performs \(R(x)/G(x) \) and get 1000 as remainder (Shown in the right)
 That indicates the frame got garbled.
CRC Code

It can be shown [PETE61] that all the following are not divisible by G(x).

1. All single-bit errors E(x)=x^i. If G(x) contains two terms. E(x)!= G(x)*H(x)

2. All double-bit errors E(x)=x^i+x^j=x^i(1+x^{j-i}), if G(x) has a factor with at least three terms. i th and jth bits have errors.

2a. All double-bit errors E(x)=x^i+x^j=x^i(1+x^{j-i}), if G(x) is a primitive with degree of c and the length of codeword is less than 2^c-1. It implies that j-i <=2^c-1.

3. Any odd number errors, i.e.,E(x=1)=1, as long as G(x) contains a factor (x+1).

 If G(x)=(x+1)*H(x), then G(x=1)=0*H(x)=0 \Rightarrow E(x=1)=1 != G(x=1)

4. Any burst error for which the length of the burst is less than the length of checksum.

5. Most larger burst errors.

Four version of G(x) are widely used:

- CRC-12= x^{12}+x^{11}+x^2+x^1+1=(x+1)(x^{11}+x^2+1)
- CRC-16= x^{16}+x^{15}+x^2+1=(x+1)(x^{15}+x+1)
- CRC-CCITT= x^{16}+x^{12}+x^5+1
- CRC-32= X^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^4+x^2+x+1

They all contain x+1 as prime factor. CRC-12 is used for transmission of streams of 6-bit characters with 12-bit checksum. CRC-16 and CRC-CCITT are popular for 8-bit characters with 16-bit checksum. CRC-32 are used in IEEE802 standards with 32bit checksum.

The following definitions are from “Coding Theory: The Essentials” by Hoffman et al.

What is a primitive polynomial? (It was referenced in properties 2a above).

- Let K={0,1}.
- Let K[x] be the set of polynomials whose coefficients are in K.
- Let f(x), g(x), d(x)be a polynomial whose coefficients are in K. They are called polynomials over K.
- Let K[x] be the set of polynomials whose coefficients are in {0, 1}.
- If f(x)=g(x)d(x), then d(x) is a divisor of f(x).
- A proper divisor of f(x), say p(x), is a polynomial over K, if p(x)!=1, p(x)!=f(x).
- f(x) is said to be irreducible if it has no proper divisors in K[x].
- An irreducible polynomial over K of degree n, n>1, is said to be primitive if it is not a divisor of 1+x^m for any m<2^n-1.
- Examples of primitive polynomial:
 - 1+x+x^2 is not a factor of 1+x^m for any m<3=2^2-1(1+x; 1+x^2) \Rightarrow it is primitive.
 - 1+x+x^3 is not a factor of 1+x^m for any m<7=2^3-1--> it is primitive.
 - 1+x+x^2+x^3+x^4 is irreducible but there is a m=5<15=2^4-1 where
 - 1+x^5=(1+x)(1+x+x^2+x^3+x^4). 1+x+x^2+x^3+x^4 is a factor of 1+x^5.
1 + x + x^2 + x^3 + x^4 \Rightarrow \text{is not primitive. (It can not detect double errors separated by 5 bits in the code word, since } (1 + x^5) \% (1 + x + x^2 + x^3 + x^4) \text{ is zero.}}

CRC-16 polynomial \((1 + x)(x^{15} + x + 1)\). Here \(x^{15} + x + 1\) is a primitive polynomial since it is not factor of \(1 + x^m\) for any \(m < 2^{15} - 1 = 32,767\).

If the length of the codeword is less than 32,767, CRC-16 can detect all double errors.

- case 3. \(E(X) = x^4 + x^2 + 1 \Rightarrow 3\text{bit errors } \Rightarrow \text{odd number of errors}

\[
x + 1 \overline{x^3 + x^2 + 1}
\]

\[
x^3 + x^2 + 1
\]

1 with remainder\(!=0\) \Rightarrow \text{not divisible. (}x + 1\) can not divide \(E(x)\) with odd number of terms.

CRC Generation Using Shift Registers

\[
g(x) = x^3 + x^2 + 1
\]

Encoder for \(g(x) = x^3 + x + 1\)

<table>
<thead>
<tr>
<th>clock</th>
<th>input</th>
<th>reg 0</th>
<th>reg 1</th>
<th>reg 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>(i_3)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>(i_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>(i_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>(i_0)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

check bits: \(r_0 = 0\) \hspace{1cm} r_1 = 1 \hspace{1cm} r_2 = 0
Implement CRC using Shift Registers

Given a Generator Polynomial \(G(x) = g_n x^n + \ldots + g_2 x^2 + g_1 x + g_0 x^0 \),

- Create \(n \) registers, label them \(\text{reg}_0 \) to \(\text{reg}_{n-1} \) from left to right. e.g., \(g(x) = x^3 + x + 1; n=3; \) draw \(\text{reg}_0 \) to \(\text{reg}_{3-1} = \text{reg}_2 \):

- For each non-zero terms, \(g_i, 0 \leq i < n \) (\(n \) not included) draw an exclusive-or operator on the left of \(\text{reg}_i \) and a line with arrow from the right of \(\text{reg}_{n-1} \) to the top of the exclusive-or operator. Write a label "\(g_i \)" to the right of the arrow.

- Draw horizontal lines with arrow that connect all the exclusive-or operators and registers along the way.

Exercise

Prob. 1. Chapter 3-42. ATM uses an eight-bit CRC on the information contained in the header. The header has six fields:
- First 4 bits: GFC field
- Next 8 bits: VPI field
- Next 16 bits: VCI field
- Next 3 bits: Type field
- Next 1 bit: CLP field
- Next 8 bits: CRC

a. The CRC is calculated using the following generator polynomial: \(x^8 + x^2 + x + 1 \).
 Find the CRC bits if the GFC VPI Type, and CLP fields are all zero and the VCI field is 00000000 00001111. Assume the GFC bits correspond to the highest-order bits in the polynomial.

 Ans: Generator polynomial: \(g(x) = x^8 + x^2 + x + 1 \)
 Information: 0000 0000000 00000000 00001111 000 0
 \(i(x) = x^7 + x^6 + x^5 + x^4 \)
 Encoding: degree of 8, \(x^8 i(x) = x^{15} + x^{14} + x^{13} + x^{12} \)
Perform polynomial division

\[
\begin{array}{c}
x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \\
\times \frac{x^8 + x^2 + 1}{x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1}
\end{array}
\]

The CRC bit is 11011110

b. Can this code detect single errors? Explain why.

Ans: Yes. Condition 1 in Figure 3.60 indicates to detect single errors, \(G(x) \) must have more than one term. Since \(g(x) \) has 4 terms, it will detect all single errors.

c. Draw the shift register division circuit for this generator polynomial.

Ans:
\[G(x) = g_8 x^8 + g_2 x^2 + g_1 x + g_0 \]

- Here degree of \(n = 8 \).
- Draw 8 registers with label "Reg i" \(i = 0, 7 \).
- For each non-zero term \(g_i \), \(0 \leq i < n \) (not included), draw an exclusive or symbol (circle with +) to the left of \(\text{Reg } i \) and and a line with arrow from the right of \(\text{Reg } n-1 \) to the top of the exclusive-or operator. Write a label "gi" to the right of the arrow.
 - Here \(g_2, g_1, \) and \(g_0 \) are non-zero terms.
- Draw horizontal lines with arrow that connect all the exclusive-or operators and registers along the way.
Correction on CRC-16, page 164

- There is an error in CRC-16 page 164.
- CRC-16 = (x+1)(x^{15}+x+1)=x^{16}+x^{15}+x^2+1 (there is no x term. they cancel out)

\[
\begin{array}{c|c}
 x^{15} & x+1 \\
 \hline
 x & x+1 \\
 \hline
 x^{16} & x^2 + x \\
 \hline
 x^{16}+x^{15}+x^2+1 & 1
\end{array}
\]